首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
综合类   1篇
污染及防治   3篇
  2004年   2篇
  2003年   1篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 156 毫秒
1
1.
Five-month old hybrid poplar clones NE388 and NE359 were exposed to square-wave 30, 55, and 80 ppb O(3) (8 h/day, 7 day/week) under constant high light (HL) and light fleck (LF) during 28 May-29 June 1999, and exposed to 30 and 55 ppb O(3) under HL, LF, and constant low light (LL) during 22 May-28 June 2000 within Continuously Stirred Tank Reactors (CSTR) in a greenhouse. Ramets of these two hybrid clones received similar total photosynthetically active radiation (PAR) within the LF and LL treatments. Visible foliar symptoms, leaf gas exchange, and growth were measured. More severe O(3) induced foliar symptoms were observed on ramets within the LF and LL treatments than within the HL treatment for both clones. The LF treatment resulted in significantly greater foliar injury than the LL treatment for NE388. The LF and LL treatments generally resulted in lower photosynthetic rates (Pn) for both clones, but did not affect stomatal conductance (g(wv)); therefore, the ratios of g(wv)/Pn and the O(3) uptake/Pn were greatest in plants grown under the LF treatment, followed by those grown under LL treatment; plants grown under HL had the lowest ratios of g(wv)/Pn and O(3) uptake/Pn. Greater ratios of g(wv)/Pn and O(3) uptake/Pn were consistently associated with more severe visible foliar symptoms. The negative impacts of the LF treatment on growth were greater than those of the LL treatment. Results indicate that not only the integral, but also the pattern of photo flux density, may affect carbon gain in plants. Increased foliar injury may be expected under light fleck conditions due to the limited repair capacity as a result of continuity of O(3) uptake while photosynthesis decreases under LL conditions.  相似文献   
2.
The responses of ramets of hybrid poplar (Populus spp.) (HP) clones NE388 and NE359, and seedlings of red maple (Acer rubrum, L.) to ambient ozone (O(3)) were studied during May-September of 2000 and 2001 under natural forest conditions and differing natural sunlight exposures (sun, partial shade and full shade). Ambient O(3) concentrations at the study site reached hourly peaks of 109 and 98 ppb in 2000 and 2001, respectively. Monthly 12-h average O(3) concentrations ranged from 32.3 to 52.9 ppb. Weekly 12-h average photosynthetically active radiation (PAR) within the sun, partial shade and full shade plots ranged from 200 to 750, 50 to 180, and 25 to 75 micromol m(-2) s(-1), respectively. Ambient O(3) exposure induced visible foliar symptoms on HP NE388 and NE359 in both growing seasons, with more severe injury observed on NE388 than on NE359. Slight foliar symptoms were observed on red maple seedlings during the 2001 growing season. Percentage of total leaf area affected (%LAA) was positively correlated with cumulative O(3) exposures. More severe foliar injury was observed on plants grown within the full shade and partial shade plots than those observed on plants grown within the sun plot. Lower light availability within the partial shade and full shade plots significantly decreased net photosynthetic rate (Pn) and stomatal conductance (g(wv)). The reductions in Pn were greater than reductions in g(wv), which resulted in greater O(3) uptake per unit Pn in plants grown within the partial shade and full shade plots. Greater O(3) uptake per unit Pn was consistently associated with more severe visible foliar injury in all species and/or clones regardless of differences in shade tolerance. These studies suggest that plant physiological responses to O(3) exposure are likely complicated due to multiple factors under natural forest conditions.  相似文献   
3.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号