首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   1篇
综合类   3篇
基础理论   3篇
污染及防治   1篇
社会与环境   7篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Radon-222 activity concentration has been monitored since 1999 in an underground limestone quarry located in Vincennes, near Paris, France. It is homogeneous in summer, with an average value of 1700 Bq m(-3), and varies from 730 to 1450 Bq m(-3) in winter, indicating natural ventilation with a rate ranging from 0.5 to 2.4 x 10(-6) s(-1) (0.04-0.22 day(-1)). This hypothesis is supported by measurements in the vertical access pit where, in winter, a turbulent air current produces a stable radon profile, smoothly decreasing from 700 Bq m(-3) at 20 m depth to 300 Bq m(-3) at surface. In summer, a thermal stratification is maintained in the pit, but the radon-222 concentration jumps repeatedly between 100 and 2000 Bq m(-3). These jumps are due to atmospheric pressure pumping, which induces ventilation in the quarry at a rate of about 0.1 x 10(-6) s(-1) (0.009 day(-1)). Radon-222 monitoring thus provides a dynamical characterisation of ventilation regimes, which is important for the assessment of the long-term evolution of underground systems.  相似文献   
2.
3.
Environmental Science and Pollution Research - Wastewater treatment plant effluents from urban area are a well-known source of chronic multiple micropollution to the downstream living organisms. In...  相似文献   
4.
The Syabru-Bensi hydrothermal zone, Langtang region (Nepal), is characterized by high radon-222 and CO2 discharge. Seasonal variations of gas fluxes were studied on a reference transect in a newly discovered gas discharge zone. Radon-222 and CO2 fluxes were measured with the accumulation chamber technique, coupled with the scintillation flask method for radon. In the reference transect, fluxes reach exceptional mean values, as high as 8700 ± 1500 g m−2 d−1 for CO2 and 3400 ± 100 × 10−3 Bq m−2 s−1 for radon. Gases fluxes were measured in September 2007 during the monsoon and during the dry winter season, in December 2007 to January 2008 and in December 2008 to January 2009. Contrary to expectations, radon and its carrier gas fluxes were similar during both seasons. The integrated flux along this transect was approximately the same for radon, with a small increase of 11 ± 4% during the wet season, whereas it was reduced by 38 ± 5% during the monsoon for CO2. In order to account for the persistence of the high gas emissions during monsoon, watering experiments have been performed at selected radon measurement points. After watering, radon flux decreased within 5 min by a factor of 2–7 depending on the point. Subsequently, it returned to its original value, firstly, by an initial partial recovery within 3–4 h, followed by a slow relaxation, lasting around 10 h and possibly superimposed by diurnal variations. Monsoon, in this part of the Himalayas, proceeds generally by brutal rainfall events separated by two- or three-day lapses. Thus, the recovery ability shown in the watering experiments accounts for the observed long-term persistence of gas discharge. This persistence is an important asset for long-term monitoring, for example to study possible temporal variations associated with stress accumulation and release.  相似文献   
5.
The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.  相似文献   
6.
Agricultural crops can be either a source or a sink of ammonia (NH3). Most NH3 exchange models developed so far do not account for the plants nitrogen (N) metabolism and use prescribed compensation points. We present here a leaf-scale simplified NH3 stomatal compensation point model related to the plants N and carbon (C) metabolisms, for C3 plants. Five compartments are considered: xylem, cytoplasm, apoplasm, vacuole and sub-stomatal cavity. The main processes accounted for are the transport of ammonium (NH4+), NH3 and nitrate (NO3) between the different compartments, NH4+ production through photorespiration and NO3 reduction, NH4+ assimilation, chemical and thermodynamic equilibriums in all the compartments, and stomatal transfer of NH3.The simulated compensation point is sensitive to paramaters related to the apoplastic compartment: pH, volume and active transport rate. Determining factors are leaf temperature, stomatal conductance and NH4+ flux to the leaf. Atmospheric NH3 concentration seem to have very little effect on the compensation point in conditions of high N fertilization. Comparison of model outputs to experimental results show that the model underestimates the NH3 compensation point for high N fertilization and that a better parametrisation of sensitive parameters especially active trasport rate of NH4+ may be required.  相似文献   
7.
Summary. Lactating rabbit females emit volatile odour cues that trigger specialized motor actions leading to sucking. But the activity of these cues may change with advancing lactation. Here, we tested this possibility in three experiments. In Exp. 1, we assessed whether 2-day-old pups respond differently to the odour of milk from females in early (day 2) as compared to late (day 23) lactation. In Exp. 2, a compound bearing pheromonal properties, the Mammary Pheromone (MP), was dosed in these milks to assess whether its concentration is correlated with behavioural activity. In Exp. 3, the responsiveness to a constant level of MP was compared in d2 versus d23-pups. Run on 240 pups, the assays showed that a) the milk activity declines between d2 and d23 of lactation; b) during this same period, the concentration of the MP decreases in milk; c) the MP itself becomes less active to elicit oral grasping in pre-weaning pups than in newborns. These results indicate that the MP is active during the period when pups are exclusively dependent on milk. The convergent changes in emission and reception of this pheromone may sequentially warrant that pups are first attracted to the mammae, and then that they progressively disinvest the mother as they begin to eat solid food and to be attracted by other conspecifics.  相似文献   
8.
9.
Photochemical aging of volatile organic compounds (VOCs) in the atmosphere is an important source of secondary organic aerosol (SOA). To evaluate the formation potential of SOA at an urban site in Lyon (France), an outdoor experiment using a Potential Aerosol Mass (PAM) oxidation flow reactor (OFR) was conducted throughout entire days during January-February 2017. Diurnal variation of SOA formations and their correlation with OH radical exposure (OHexp), ambient pollutants (VOCs and particulate matters, PM), Relative Humidity (RH), and temperature were explored in this study. Ambient urban air was exposed to high concentration of OH radicals with OHexp in range of (0.2–1.2)×1012 molecule/(cm3?sec), corresponding to several days to weeks of equivalent atmospheric photochemical aging. The results informed that urban air at Lyon has high potency to contribute to SOA, and these SOA productions were favored from OH radical photochemical oxidation rather than via ozonolysis. Maximum SOA formation (36 µg/m3) was obtained at OHexp of about 7.4 × 1011molecule/(cm3?sec), equivalent to approximately 5 days of atmospheric oxidation. The correlation between SOA formation and ambient environment conditions (RH & temperature, VOCs and PM) was observed. It was the first time to estimate SOA formation potential from ambient air over a long period in urban environment of Lyon.  相似文献   
10.
The effects of simplified rhizospheric conditions on the leaching of (241)Am from a calcareous soil, freshly contaminated, were investigated in batch and column experiments. Glucose and/or citrate were used as artificial exudate solutions at concentrations ranging from 10(-4) to 10(-2)moldm(-3). Am desorption, expressed in terms of distribution coefficients, varied from K(d)>10(4)dm(3)kg(-1) corresponding to a majority of experimental conditions, to K(d)/=10(-2)moldm(-3). Soil columns revealed successive steady states coupled with transitory episodes, the latter represented up to 90% of the total Am release. (241)Am fractions with different behaviours were thus highlighted in columns whereas batch only accounted for highest Am mobile fractions. The implications of the different processes are discussed in terms of modelling approach and risk assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号