首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
污染及防治   5篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Air samples were collected simultaneously at three urban sites in São Paulo City, Brazil, in winter, spring, summer and fall (in 2000 and 2001). Andersen PUF samplers were used for gas and particles sequential sampling. Samples were analyzed using HRGC/HRMS according to US EPA Method 8290. The greater metropolitan area of São Paulo is the largest industrialized region of Latin America and has a highly polluted atmosphere. Concentrations of dioxins and furans, which are well-known toxic chemicals, ranged from 1.14 pg m−3 to 13.8 pg m−3 (0.047 pg I-TEQ m−3 to 0.751 pg I-TEQ m−3). Principal component analysis showed that all the variables are highly correlated with one another except the 2,3,7,8-TCDD one. This is consistent with the similar concentration profiles observed for the tetra, penta, hexa, hepta and octa-homologous groups of the three sampling sites studied. At all sites, the most abundant compounds were the hepta and octa congeners. The 2,3,4,7,8-PeCDF accounted for 37–46% of the total toxicity and the 2,3,7,8-TCDD accounted for 7–16%. Highest mass concentrations of PCDD/Fs were found in the site where there is influence of industrial activities and heavy vehicular traffic fueled by gasohol, diesel, and ethanol.  相似文献   
2.
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20–25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A – Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application.Results showed that the total PAH emission factor varied from 41.9 μg km?1 to 612 μg km?1 in the gasohol vehicle, and from 11.7 μg km?1 to 27.4 μg km?1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km?1 to 4.61 μg TEQ km?1 for the gasohol vehicle and from 0.0117 μg TEQ km?1 to 0.0218 μg TEQ km?1 in the ethanol vehicle.For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission.  相似文献   
3.
The exhaust emissions of 17 polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were investigated in two spark-ignition light-duty vehicles, one gasohol-fueled and a flexible-fuel one fueled with hydrated ethanol. Gasohol is a mixture of gasoline and 22% ethanol. The influence of fuel type and quality, lubricant oil type, and use of fuel additives on the formation of these compounds was tested using standardized U.S. Federal Test Procedure (FTP)-75 cycle tests. The sampling of the PCDD/Fs followed the recommendations of a modified U.S. Environmental Protection Agency (EPA) Method 23 (www.epa.gov/ttn/ emc/promgate/m-23.pdf) and the analysis basically followed the U.S. EPA Method 8290 (http://www.epa.gov/osw/ hazard/testmethods/sw846/pdfs/8290a.pdf). Results showed that emission factors of PCDD/Fs for the.gasohol vehicle varied from undetected to 0.068 pg international toxic equivalency (I-TEQ) km(-1) (average of 0.0294 pg I-TEQ km(-1)), whereas in the ethanol vehicle they varied from 0.004 to 0.157 pg (I-TEQ) km(-1) (average of 0.031 pg I-TEQ km(-1)). In the gasohol-powered vehicle, the use of fuel additive diminished the emission of Octachlorodibenzo-p-dioxin (OCDD) significantly, whereas in the ethanol vehicle no significant associations were observed between the investigated variables and the emissions.  相似文献   
4.
Polycyclic aromatic hydrocarbons (PAHs) in air were measured in a municipality where sugarcane plantations are extensive, at three sites, one in the city center and two in rural localities. Twenty-four-hour sampling was done using PS1 PUF samplers from Andersen Instruments Inc., at least 1 day per month per site, from June 2009 to October 2009. The chemical analyses were performed by gas chromatography–mass spectrometry (GC/MS) for the 16 most toxic PAHs. The incremental lifetime cancer risk (ILTR) by inhalation was determined by the Monte Carlo method for the urban population using Crystal Ball software. The total concentration of the 16 PAHs at all sites varied from 6.2 to 65.7 ng m?3, with an average of 25.9 ± 18.2 ng m?3. The average concentrations per site were 14.1 ± 13.0 ng m?3 at rural site B, 20.7 ± 11.5 ng m?3 at rural site A, and 36.1 ± 22.7 ng m?3 at the central site. The cancer risk for infants, children, and adults was approximately 14%, 25%, and 61% of the total IRLT, respectively. The mean (95% upper probability limit [95% UPL]) values were 1.2 × 10?7 (2.2 × 10?7) for infants, 2.2 × 10?7 (4.1 × 10?7) for children, and 8.9 × 10?7 (1.1 × 10?6) for adults. Although the three most abundant PAHs found were phenanthrene, fluoranthene, and pyrene, the three most important contributions to the incremental risk of cancer came from benzo[a]pyrene, benzo[b]fluoranthene, and naphthalene. Compared with the risks in big cities such as São Paulo, this would be low, but not negligible. Analysis of ratios of PAHs according to the literature showed that vehicle exhaust and biomass burning, including sugarcane burning, seem to be the most important contributors to PAH concentrations in the central area of Araraquara City.
Implications:The growth of biofuel use worldwide, especially ethanol, together with preharvesting burning practice, is cause of concern with regard to possible health effects, due to increased air pollution levels in cities in regions where sugarcane plantation and processing are intensive. This paper shows that the risk of cancer from PAH inhalation in an urban area surrounded by sugarcane agriculture was of the same order of magnitude as the tolerable risk value of 10?6. As other classical and hazardous pollutants are also present, care should be taken to keep pollution as low as possible to protect human health.  相似文献   
5.
ABSTRACT

The exhaust emissions of 17 polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were investigated in two spark-ignition light-duty vehicles, one gasohol-fueled and a flexible-fuel one fueled with hydrated ethanol. Gasohol is a mixture of gasoline and 22% ethanol. The influence of fuel type and quality, lubricant oil type, and use of fuel additives on the formation of these compounds was tested using standardized U.S. Federal Test Procedure (FTP)-75 cycle tests. The sampling of the PCDD/Fs followed the recommendations of a modified U.S. Environmental Protection Agency (EPA) Method 23 (http://www.epa.gov/ttn/emc/promgate/m-23.pdf) and the analysis basically followed the U.S. EPA Method 8290 (http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8290a.pdf). Results showed that emission factors of PCDD/Fs for the gasohol vehicle varied from undetected to 0.068 pg international toxic equivalency (I-TEQ) km?1 (average of 0.0294 pg I-TEQ km?1), whereas in the ethanol vehicle they varied from 0.004 to 0.157 pg (I-TEQ) km?1 (average of 0.031 pg I-TEQ km?1). In the gasohol-powered vehicle, the use of fuel additive diminished the emission of Octachlorodibenzo-p-dioxin (OCDD) significantly, whereas in the ethanol vehicle no significant associations were observed between the investigated variables and the emissions.

IMPLICATIONS The objective of this work was to analyze differences in emissions from a traditional fossil fuel (gasoline) and an alternative renewable fuel (ethanol from sugarcane), and the influence of fuel additives and lubricant oils on the formation of chlorinated dioxins and furans in spark-ignition light-duty gasohol and ethanol vehicles. Renewable fuels are very important in terms of climate change but the risk to the population's health must not increase. Thus the results of this work could help in the development of environmental impact studies as well as orienting policy-makers in formulating strategies for air pollution control.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号