首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   7篇
  国内免费   4篇
安全科学   4篇
废物处理   16篇
环保管理   22篇
综合类   15篇
基础理论   34篇
污染及防治   61篇
评价与监测   33篇
社会与环境   17篇
灾害及防治   3篇
  2023年   4篇
  2022年   15篇
  2021年   13篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   6篇
  2014年   8篇
  2013年   29篇
  2012年   6篇
  2011年   11篇
  2010年   20篇
  2009年   4篇
  2008年   8篇
  2007年   3篇
  2006年   7篇
  2005年   9篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   3篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1963年   3篇
  1962年   1篇
排序方式: 共有205条查询结果,搜索用时 23 毫秒
1.
Environmental Science and Pollution Research - There has been alarming depletion of manganese (Mn) reserves owing to the ongoing extensive mining operations for catering the massive industrial...  相似文献   
2.
In this study, Talinum triangulare Jacq. (Willd.) treated with different lead (Pb) concentrations for 7 days has been investigated to understand the mechanisms of ascorbate–glutathione metabolisms in response to Pb-induced oxidative stress. Proteomic study was performed for control and 1.25 mM Pb-treated plants to examine the root protein dynamics in the presence of Pb. Results of our analysis showed that Pb treatment caused a decrease in non-protein thiols, reduced glutathione (GSH), total ascorbate, total glutathione, GSH/oxidized glutathione (GSSG) ratio, and activities of glutathione reductase and γ-glutamylcysteine synthetase. Conversely, cysteine and GSSG contents and glutathione-S-transferase activity was increased after Pb treatment. Fourier transform infrared spectroscopy confirmed our metabolic and proteomic studies and showed that amino, phenolic, and carboxylic acids as well as alcoholic, amide, and ester-containing biomolecules had key roles in detoxification of Pb/Pb-induced toxic metabolites. Proteomic analysis revealed an increase in relative abundance of 20 major proteins and 3 new proteins (appeared only in 1.25 mM Pb). Abundant proteins during 1.25 mM Pb stress conditions have given a very clear indication about their involvement in root architecture, energy metabolism, reactive oxygen species (ROS) detoxification, cell signaling, primary and secondary metabolisms, and molecular transport systems. Relative accumulation patterns of both common and newly identified proteins are highly correlated with our other morphological, physiological, and biochemical parameters.  相似文献   
3.
Three different mass-transfer expressions are employed within the Model of Aerosol, Gas, and Interfacial Chemistry (MAGIC) to study gas-phase molecular chlorine and bromine production from NaCl and NaBr aerosols, respectively. Simulations of chamber experiments are performed in which NaCl aerosols react with gas-phase ozone in the presence of UV light, in order to identify the importance of the Knudsen number and mass-transfer expression in systems with varying contributions from gas-phase, aqueous-phase, and interfacial chemistry. In the case of NaBr aerosols, simulations are performed of both dark and photolytic conditions. A range of Knudsen numbers spanning the continuum, transition and free-molecular regimes is studied. Particle size is varied over three orders of magnitude, and particle concentration is changed to keep either (a) total aerosol volume or (b) total aerosol surface area constant. When total aerosol volume is constant, the total amount of surface area available for interfacial reaction increases linearly with Knudsen number. Consequently peak gas-phase Cl2 and Br2 concentrations increase by two orders of magnitude from the continuum regime to the free-molecular regime. When total aerosol surface area is constant, total aerosol volume is inversely proportional to Knudsen number, with lesser volume being available at higher Knudsen numbers. Consequently Cl? depletion in the kinetic regime leads to most gas-phase Cl2 being produced in the transition regime. Gas-phase Br2 concentration trends are determined by aqueous-phase reaction mechanisms, leading to a monotonic decrease in production with Knudsen number. At all Knudsen numbers, more gas-phase bromine is produced in the photolytic case than in the dark case, the difference being significant in the transition regime. Results of this study suggest that halogen production is insensitive to the mass-transfer expression used in the simulations.  相似文献   
4.
Environmental Science and Pollution Research - Secondhand smoke (SHS) accounts for 0.9 million deaths and 24 million disability adjusted life years (DALYs) annually. Nearly 30% of adults in India...  相似文献   
5.
Environmental Science and Pollution Research - Compressed natural gas is an alternative green fuel for automobile industry. Recently, the Indian government is targeting to replace all the...  相似文献   
6.

As a global pollutant, Hg (Hg) since the turn of the last century has received increased attention. Decreasing the emission of Hg into the food chain and the atmosphere is an effective way to reduce the Hg damage. The current study provided information about pilot-scale horizontal subsurface flow (HSSF) constructed wetlands (CWs) to remove different Hg species in polluted water. Synthetic wastewater was fed to two HSSF CWs, one was planted with Acorus calamus L and the other was unplanted as a control. The total Hg (THg), dissolved Hg (DHg), and particulate Hg (PHg) from five sites along the HSSF CWs were analyzed to describe the process of Hg removal. Results show that the CWs have high removal efficiency of Hg which is more than 90%. The removal efficiencies of THg and DHg from the unplanted CW were 92.1?±?3.6% and 72.4?±?13.1%, respectively. While, the removal efficiencies of THg and DHg in planted CW were 95.9?±?7.5% and 94.9?±?4.9%, which were higher than that in blank CW. The PHg was mainly removed in the first quarter of the CWs, which was also revealed by the partition coefficient Kd. To a certain extent, the effect of plants depends on the hydraulic retention time (HRT). The results in the current study show the potential of the HSSF-CWs for restoration from Hg-contaminated water.

  相似文献   
7.
Hydroponic experiments were performed with Talinum triangulare (Jacq.) Willd. focusing the root cellular biochemistry with special emphasis on DNA damage, structural, and elemental analyses in Pb(NO3)2 exposed with 0, 0.25, 0.5, 0.75, 1.0, and 1.25 mM for 7 days. Lead (Pb) increased reactive oxygen species production, lipid peroxidation, protein oxidation, cell death, and DNA damage and decreased the protein content in a dose-dependent manner. Likewise, a dose-dependent induction of antioxidative enzymes superoxide dismutase and catalase by Pb was evident. Ascorbate peroxidase on the other hand responded biphasically to Pb treatments by showing induction at low (0.25 and 0.50) and repression at high (0.75–1.25 mM) concentrations. The estimation of proline content also indicated a similar biphasic trend. Scanning electron microscope and energy-dispersive X-ray spectroscopy analysis showed that 1.25 mM Pb treatment resulted in ultrastructural modifications in roots and stem tissue that was marked by the change in the elemental profile. The findings pointed to the role of oxidative stress in the underlying Pb phytotoxicity and genotoxicity in T. triangulare.  相似文献   
8.
This paper describes the development and evaluation of a computationally efficient semi-empirical photochemical model that can be used as a screening tool to obtain quick estimates of the effect of a large number of VOC and NOx emission control strategies on ozone concentrations. Selected control strategies can subsequently be examined with a more complex model. The model is one component of an ozone management system, the regional ozone decision model (RODM), designed to examine the costs and environmental consequences of alternate ozone abatement strategies.The model was developed by systematic simplification of a detailed photochemical model. At each step of the simplification, the simplified model was tested against observations and against results from the detailed model. The first major simplification was the introduction of a highly parameterized chemistry mechanism, originally developed by Azzi et al. (1992 Proc. 11th Int. Clean Air Conf., 4th Regional IUAPPA Conf.). This modification resulted in a factor of 5 improvement in the computational efficiency of the model. The model with the simplified chemistry was then tested by applying it to a photochemical oxidant episode in the San Joaquin Valley of California. Further improvements in computational speed and efficiency were obtained by uncoupling the chemistry from the transport of VOC and NOx.  相似文献   
9.
Environmental Science and Pollution Research - Overutilized hydro-energy production through non-sustainable mode is detrimental for both the economy and the environment. Intermittent consumption of...  相似文献   
10.
Environmental Science and Pollution Research - Characteristics of pulverized coals have significant influence on the spontaneous combustion and explosion processes. This paper presents an...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号