排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
矿区污染土壤Pb、Cd、Cu和Zn的形态分布及其生物活性的研究 总被引:11,自引:3,他引:11
调查湘南某铅锌矿区周围的菜园土和水稻土Pb、Cd、Cu和Zn的形态分布及其生物活性和迁移性。结果表明:两种土壤中Pb、Cd、Cu和Zn的总量分别超过国家土壤环境质量相应的标准。运用Tessier连续提取法研究发现,土壤中Pb、Cd、Cu和Zn的各形态含量之和与其总量非常的接近,其中菜园土Pb的提取率为96.3%,Cd的为94.1%,Cu的为93.4%和Zn的为91.7%;水稻土Pb的为97.6%,Cd的为92.0%,Cu的为92.1%和Zn的为91.7%,表明该形态分析方法的结果是合理的。土壤中Pb、Cd、Cu和Zn各形态的分布存在很大的差别,残渣态是主要形态,其中Pb的含量占60.7%~58.2%,Cd的是50.4%~59.2%,Cu的是37.3%~53.4%,Zn的是54.9%~46.9%,而交换态所占的比例最小。菜园土重金属的生物活性系数的大小是:Cd>Cu>Pb>Zn,迁移能力的顺序是Cd>Cu>Zn>Pb;水稻土重金属的活性大小和迁移能力的顺序都是:Cd>Pb>Zn>Cu。菜园土重金属的生物活性和迁移性较水稻土的大,其中Cd的生物活性和迁移性的最大。研究结果将为评估矿区污染土壤中重金属的危害提供科学依据。 相似文献
2.
Liang Peng Yanqing Ren Jidong Gu Pufeng Qin Qingru Zeng Jihai Shao Ming Lei Liyuan Chai 《Environmental science and pollution research international》2014,21(12):7631-7640
Novel magnetic carbonaceous bio-char was hydrothermal prepared from microalgae under different loadings of iron and its structures and surface chemistry were characterized with Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and nitrogen adsorption-desorption isotherm (BET). The morphology of bio-char changed from sheet to particle as iron loading increased and its surface area also increased. When 3.0 g of dried microalgae and 6.0 mmol iron salt ((NH4)2SO4·FeSO4·6H2O) were mixed and treated, the obtained bio-char possessing the highest amount of oxygen-containing functional groups resulted in the best adsorption performance on tetracycline (TC). This adsorption process was fitted to Langmuir adsorption isotherm and the maximum adsorption capacity was 95.86 mg/g, which is higher than other bio-char reported. The iron loading contributed to the higher adsorption capacity of bio-char, which may be due to three factors, the high surface area, more hydrogen bonding, and bridging effects of the structural Fe for TC. Our data suggest that bio-char may have more important role in stabilization of pollutants in the environment. 相似文献
3.
本文利用长沙市区环境空气质量监测站点在线观测资料,结合罐采样-三级冷阱预浓缩-气相色谱法分析非甲烷烃类化合物和衍生化-高效液相色谱法分析醛酮类化合物,基于观测的光化学模型分析了长沙市区2017年5月和9月部分时段臭氧生成对前体物的敏感性.结果表明,观测期间长沙市区臭氧浓度日变化均呈现典型的单峰特征,峰值浓度出现在15时左右,凌晨高浓度一氧化氮呈现对臭氧明显的滴定效应;5月非甲烷烃浓度和醛酮总浓度较9月高,非甲烷烃主要组成为烷烃和芳香烃类,其次为植物源烃类,而甲醛、乙醛和丙酮为醛酮类化合物主要组分.白天随着光化学过程的发展,非甲烷烃被逐渐消耗,其活性浓度随之降低.模型分析发现:5月份氮氧化物和植物源烃类对长沙市区臭氧生成贡献最大,削减氮氧化物对臭氧控制最为有效;而9月臭氧生成对烯烃和芳香烃最为敏感,削减人为源烯烃和芳香烃对臭氧控制最为有效. 相似文献
4.
Huang Shaojian Dai Chunhao Zhou Yaoyu Peng Hui Yi Kexin Qin Pufeng Luo Si Zhang Xiaoshan 《Environmental science and pollution research international》2018,25(17):16548-16566
Environmental Science and Pollution Research - Plant leaves play a key role in the accumulation of PAHs, as they are able to capture PAHs from the air. In this paper, the mechanism, including... 相似文献
5.
在长沙市一个国家空气质量监测站附近采用罐采样方法采集环境全空气样品,利用三级冷阱预浓缩-GC/Dean-switch/FID/FID技术分析59种非甲烷碳氢化合物,同步采用2,4-二硝基苯肼(DNPH)-高效液相色谱法测定醛酮类化合物,研究非甲烷碳氢化合物及醛酮类化合物的组成与来源.结果表明,大气非甲烷碳氢化合物的总平均体积分数为(43.31 ±33.86)×10-9,其中异戊烷的体积分数最大;醛酮类化合物总浓度为(9.17±3.16)μg·m-3,主要为丙酮、甲醛和乙醛且其贡献了总浓度的90%以上.结合主成分分析法分析非甲烷碳氢化合物的来源,结果表明,汽油挥发、尾气排放及溶剂使用是大气非甲烷碳氢化合物的主要来源,分别对总浓度贡献了16.65%、16.61%、22.65%;进一步利用比值分析法表明苯系物的主要来源是汽车排放,醛酮类化合物符合城区的比值特征. 相似文献
6.
7.
本文对目前研究最多的汞、铬、镉、铅和砷等重金属,详细分析了它们在水体中的迁移转化、价态变化、吸附与解吸附作用、吸附和共沉淀作用等动态过程;简要地阐述五种重金属对水体的污染给人体带来的危害;重点讨论了对水体重金属污染采取控制与消除土壤污染源、含重金属工业废水的排放和生物修复技术等防治对策。 相似文献
8.
9.
10.
An arsenic-contaminated field trial to assess the uptake and translocation of arsenic by genotypes of rice 总被引:1,自引:0,他引:1
Ming Lei Baiqing Tie Min Zeng Pufeng Qing Zhengguo Song Paul N. Williams Yizong Huang 《Environmental geochemistry and health》2013,35(3):379-390
Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg?1, with mean As concentration 64.44 mg kg?1. The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27–385.98 mg kg?1 dry weight), while the lowest was in unpolished rice (0.31–0.52 mg kg?1 dry weight). The distribution of As in rice tissue and paddy soil are as follows root ? soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg?1 dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field. 相似文献