首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
污染及防治   1篇
评价与监测   6篇
  2022年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.  相似文献   
2.
Environmental Science and Pollution Research - The Himalayan glaciers provide water to a large population in south Asia for a variety of purposes and ecosystem services. As a result, regional...  相似文献   
3.
Dal Lake, a cradle of Kashmiri civilization has strong linkage with socioeconomics of the state of Jammu and Kashmir. During last few decades, anthropogenic pressures in Dal Lake Catchment have caused environmental deterioration impairing, inter-alia, sustained biotic communities and water quality. The present research was an integrated impact analysis of socioeconomic and biophysical processes at the watershed level on the current status of Dal Lake using multi-sensor and multi-temporal satellite data, simulation modelling together with field data verification. Thirteen watersheds (designated as ‘W1–W13’) were identified and investigated for land use/land cover change detection, quantification of erosion and sediment loads and socioeconomic analysis (total population, total households, literacy rate and economic development status). All the data for the respective watersheds was integrated into the GIS environment based upon multi-criteria analysis and knowledge-based weightage system was adopted for watershed prioritization based on its factors and after carefully observing the field situation. The land use/land cover change detection revealed significant changes with a uniform trend of decreased vegetation and increased impervious surface cover. Increased erosion and sediment loadings were recorded for the watersheds corresponding to their changing land systems, with bare and agriculture lands being the major contributors. The prioritization analysis revealed that W5?>?W2?>?W6?>?W8?>?W1 ranked highest in priority and W13?>?W3?>?W4?>?W11?>?W7 under medium priority. W12?>?W9?>?W10 belonged to low-priority category. The integration of the biophysical and the socioeconomic environment at the watershed level using modern geospatial tools would be of vital importance for the conservation and management strategies of Dal Lake ecosystem.  相似文献   
4.
Physico-chemical groundwater (GW) parameters were evaluated to understand the hydrogeochemical processes in the Siwalik plains of Jammu and Kashmir, India. During the 2012–2013 post-monsoon (POM) and pre-monsoon (PRM) seasons, GW samples (n = 207) from deep bore wells and shallow open wells were chemically analysed. Cations (Ca2+, Mg2+, Na+, K+ and Fe2+) and anions (HCO3 ?, Cl?, SO4 2? and F?) showed a wide spatio-temporal variation. Results suggest that weathering and dissolution of carbonates and silicate rocks is the main source of water mineralization. The major hydrochemical facies is characterized by Ca-Mg-HCO3 and Ca-HCO3 during the PRM and POM seasons respectively. The presence of sulphate-bearing water in a large number of the samples indicates a significant role of gypsum dissolution and anthropogenic contamination of the GW. Factor analysis (FA) and hierarchical cluster analysis (HCA) revealed that the variability of hydrochemistry is mainly related to rock-water interaction, dissolution of carbonates and other lithological units as well as the influence of anthropogenic activities in the area. Overall, it was found that the GW quality is within the limits of human consumption. The higher concentration of a few chemicals indicates an increasing trend of industrial contamination of the GW. For sustainable development of the portable GW in Siwaliks, it is necessary to minimize the adverse impacts of the anthropogenic and industrial contamination on the GW resources through best management practices and prevent its further contamination to a level that could make GW unsuitable for human uses.  相似文献   
5.
Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.  相似文献   
6.
The pristine waters of Kashmir Himalaya are showing signs of deterioration due to multiple reasons. This study researches the causes of deteriorating water quality in the Lidder River, one of the main tributaries of Jhelum River in Kashmir Himalaya. The land use and land cover of the Lidder catchment were generated using multi-spectral, bi-seasonal IRS LISS III (October 2005 and May 2006) satellite data to identify the extent of agriculture and horticulture lands that are the main non-point sources of pollution at the catchment scale. A total of 12 water quality parameters were analyzed over a period of 1 year. Water sampling was done at eight different sampling sites, each with a varied topography and distinct land use/land cover, along the length of Lidder River. It was observed that water quality deteriorated during the months of June–August that coincides with the peak tourist flow and maximal agricultural/horticultural activity. Total phosphorus, orthophosphate phosphorus, nitrate nitrogen, and ammoniacal nitrogen showed higher concentration in the months of July and August, while the concentration of dissolved oxygen decreased in the same period, resulting in deterioration in water quality. Moreover, tourism influx in the Lidder Valley shows a drastic increase through the years, and particularly, the number of tourists visiting the valley has increased in the summer months from June to September, which is also responsible for deteriorating the water quality of Lidder River. In addition to this, the extensive use of fertilizers and pesticides in the agriculture and horticulture lands during the growing season (June–August) is also responsible for the deteriorating water quality of Lidder River.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号