首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   1篇
污染及防治   1篇
  2016年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
This paper reports the effect of twice-ambient (700 ppm) atmospheric CO(2) concentration on infection, disease development, spore production and dispersal of the anthracnose pathogen Colletotrichum gloeosporioides in susceptible (Fitzroy) and partially resistant (Seca) cultivars of the tropical pasture legume Stylosanthes scabra under controlled environment and field conditions. Reduction in plant height due to anthracnose was partially compensated for by growth enhancement at elevated CO(2) in Fitzroy but not in Seca. Anthracnose severity was reduced under elevated CO(2) although the reduction was only significant in Fitzroy. Delayed and reduced germination, germtube growth and appressoria production were partly responsible for the reduced severity. Despite an extended incubation period, C. gloeosporioides developed sporulating lesions faster and produced more spores per day within the same latent period at high CO(2) and ambient CO(2). When Fitzroy seedlings grown at 700 ppm CO(2) were exposed to pathogen inoculum under field conditions, they consistently developed more severe anthracnose with more lesions than seedlings grown at ambient CO(2). The environmental variable, which correlated most strongly with the dispersal and infection of C. gloeosporioides spores in the field, was relative humidity in plant canopy. We have shown that an enlarged Stylosanthes canopy under elevated CO(2) can trap more spores, which can lead to more severe anthracnose under favorable weather. The implications of these findings for perennial Stylosanthes pastures are discussed.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号