首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
污染及防治   2篇
  2021年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

The ubiquitous β-Proteobacterium Gallionella ferruginea is known as stalk-forming, microaerophilic iron(II) oxidizer, which rapidly produces iron oxyhydroxide precipitates. Uranium and neptunium sorption on the resulting intermixes of G. ferruginea cells, stalks, extracellular exudates, and precipitated iron oxyhydroxides (BIOS) was compared to sorption to abiotically formed iron oxides and oxyhydroxides. The results show a high sorption capacity of BIOS towards radionuclides at circumneutral pH values with an apparent bulk distribution coefficient (Kd) of 1.23 × 104 L kg?1 for uranium and 3.07 × 105 L kg?1 for neptunium. The spectroscopic approach by X-ray absorption spectroscopy (XAS) and ATR FT-IR spectroscopy, which was applied on BIOS samples, showed the formation of inner-sphere complexes. The structural data obtained at the uranium LIII-edge and the neptunium LIII-edge indicate the formation of bidentate edge-sharing surface complexes, which are known as the main sorption species on abiotic ferrihydrite. Since the rate of iron precipitation in G. ferruginea-dominated systems is 60 times faster than in abiotic systems, more ferrihydrite will be available for immobilization processes of heavy metals and radionuclides in contaminated environments and even in the far-field of high-level nuclear waste repositories.

  相似文献   
2.
Humic colloid-borne migration of uranium in sand columns   总被引:3,自引:0,他引:3  
Column experiments were carried out to investigate the influence of humic colloids on subsurface uranium migration. The columns were packed with well-characterized aeolian quartz sand and equilibrated with groundwater rich in humic colloids (dissolved organic carbon (DOC): 30 mg dm(-3)). U migration was studied under an Ar/1% CO2 gas atmosphere as a function of the migration time, which was controlled by the flow velocity or the column length. In addition, the contact time of U with groundwater prior to introduction into a column was varied. U(VI) was found to be the dominant oxidation state in the spiked groundwater. The breakthrough curves indicate that U was transported as a humic colloid-borne species with a velocity up to 5% faster than the mean groundwater flow. The fraction of humic colloid-borne species increases with increasing prior contact time and also with decreasing migration time. The migration behavior was attributed to a kinetically controlled association/dissociation of U onto and from humic colloids and also a subsequent sorption of U onto the sediment surface. The column experiments provide an insight into humic colloid-mediated U migration in subsurface aquifers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号