首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
综合类   1篇
污染及防治   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.

An appraisal of seawater intrusion into the coastal aquifers is one of the major issues for groundwater resource management. The GALDIT model applies to the analysis of multiple parameters using systematic GIS techniques for mapping and assessment of seawater intrusion vulnerability. It demarcates the mapping of potential vulnerability that shows a higher vulnerability to seawater intrusion in various parts of the coast and the estimated vulnerability index value of 7.50 and 9.64. An area of 33.0 km2 spread in the low-lying coastal area comprising estuaries, salt marshes, and saltpans shows the high vulnerability condition with an estimated vulnerability value of 6.42–7.50. An area of 73.20 km2 spread over coastal and alluvial plains experiences moderate vulnerability (temporal salinity in the groundwater sources) with an estimated vulnerability index value of 5.46–6.42. Aquifers underlying coastal uplands (hard rock formations) and some parts of accretionary beaches (2.05 km2) are relatively protected fresh groundwater sources, wherein the estimated vulnerability index is 4.55–5.46. The vulnerability mapping of the GALDIT model using hydrochemical analysis of primary groundwater parameters such as TDS, Cl?, HCO3, and Cl?/HCO3 ratio is validated. Higher concentration of TDS (2637–4162 mg/l) and Cl? (1268–2347 mg/l) is taken for the areas falling under higher vulnerability to seawater intrusion, especially in the placer mining sites and coastal areas facing erosion. Similarly, the groundwater sources of the low-lying areas including estuaries, salt marshes, saltpans, and backwater were noted to have higher values of Cl?/HCO3 with a rationality of 9.87–12.18. Hydrological facies shows the highest concentration of NaCl in the groundwater sources within the proximity of eroded beaches, saltwater bodies, and sand mining areas. A hydrochemical facies evolution (HFE) diagram represents the hydrochemical facies of groundwater elements that shows an intrusion of seawater into the coastal aquifers underlying the very high vulnerable zones. Higher bicarbonate concentration (233–318 mg/l) is noticed in the upland areas and some parts of dunes and accreted beaches, sandy coasts, and uplands. Vulnerability analysis reveals that those areas near saltwater bodies and eroding coasts are prone to lateral and vertical diffusion of saltwater. The geodatabase developed through such modeling studies can help in planning and developing activities for sustainable groundwater resource management in coastal areas.

  相似文献   
2.
Extracellular polymeric substances(EPS) produced by microorganisms represent biological macromolecules with unfathomable potentials and they are required to be explored further for their potential application as a bioflocculant in various wastewater sludge treatment. Although several studies already exist on biosynthetic pathways of different classical biopolymers like alginate and xanthan, no dedicated studies are available for EPS in sludge. This review highlights the EPS composition, functionality, and biodegradability for its potential use as a carbon source for production of other metabolites. Furthermore, the effect of various extraction methods(physical and chemical) on compositional, structural, physical and functional properties of microbial EPS has been addressed. The vital knowledge of the effect of extraction method on various important attributes of EPS can help to choose the suitable extraction method depending upon the intended use of EPS. The possible use of different molecular biological techniques for enhanced production of desired EPS was summarized.  相似文献   
3.
Pilot-scale Bacillus thuringiensis based biopesticide production (2000 L bioreactor) was conducted using starch industry wastewater (SIW) as a raw material using optimized operational parameters obtained in 15 L and 150 L fermenters. In pilot scale fermentation process the oxygen transfer rate is a major limiting factor for high product yield. Thus, the volumetric mass transfer coefficient (KLa) remains a tool to determine the oxygen transfer capacity [oxygen utilization rate (OUR) and oxygen transfer rate (OTR)] to obtain better bacterial growth rate and entomotoxicity in new bioreactor process optimization and scale-up. This study results demonstrated that the oxygen transfer rate in 2000 L bioreactor was better than 15 L and 150 L fermenters. The better oxygen transfer in 2000 L bioreactor augmented the bacterial growth [total cell (TC) and viable spore count (SC)] and delta-endotoxin yield. Prepared a stable biopesticide formulation for field use and its entomotoxicity was also evaluated. This study result corroborates the feasibility of industrial scale operation of biopesticide production using starch industry wastewater as raw material.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号