首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   0篇
  国内免费   5篇
安全科学   5篇
废物处理   4篇
环保管理   14篇
综合类   21篇
基础理论   17篇
污染及防治   35篇
评价与监测   14篇
社会与环境   13篇
  2023年   1篇
  2022年   7篇
  2021年   7篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   9篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
1.
Chromium toxicity in plants   总被引:56,自引:0,他引:56  
Due to its wide industrial use, chromium is considered a serious environmental pollutant. Contamination of soil and water by chromium (Cr) is of recent concern. Toxicity of Cr to plants depends on its valence state: Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Since plants lack a specific transport system for Cr, it is taken up by carriers of essential ions such as sulfate or iron. Toxic effects of Cr on plant growth and development include alterations in the germination process as well as in the growth of roots, stems and leaves, which may affect total dry matter production and yield. Cr also causes deleterious effects on plant physiological processes such as photosynthesis, water relations and mineral nutrition. Metabolic alterations by Cr exposure have also been described in plants either by a direct effect on enzymes or other metabolites or by its ability to generate reactive oxygen species which may cause oxidative stress. The potential of plants with the capacity to accumulate or to stabilize Cr compounds for bioremediation of Cr contamination has gained interest in recent years.  相似文献   
2.
Enormous quantity of water is used for coal beneficiation and accordingly huge amount of effluents are being generated. In this study an attempt was made to evaluate the potential of this effluent water for irrigation. Water samples were collected from three different points (a) feeding point, (b) thickening point, and (c) outlet point of coal washery, and from Damodar River for monitoring the water quality. The samples were analyzed for various parameters and compared with prescribed standard, which revealed that the total suspended solids of thickening point and Damodar River were higher. A pot experiment with maize was conducted to study the suitability of this coal washery water for irrigation. Pots were irrigated with water from the three points of washery and Damodar River in two concentrations (100% and 50% dilution with distilled water); pure distilled water was used for control. There was 100% germination in all the treatments. The plant growth, chlorophyll content and soil quality parameters were significantly better in washery and Damodar River water treated pots. The Damodar River water and washery water from feeding and outlet point could be successfully used for irrigation. In general mixing with good quality water has shown better results.  相似文献   
3.
Demand for sustainable renewable energy is on an increase worldwide, whereas the supply is limited. This paper analyses the feasibility of generating electricity and supplying the surplus steam to Daeduk Industrial Complex, by incinerating the combustible municipal waste generated in Daejeon Metropolitan City. The economic feasibility of surplus biogas generated from the anaerobic digestion of food waste and food waste leachate has been analysed. This study estimated resource circulation facility to supply 23,200 m3/day of biogas generated to Daejeon Combined Heat and Power plant. By 2023, it is expected to supply 25.7 tons of steam per hour all year round. The additional steam demand in Daeduk Industrial Complex is estimated as 101,537 tons/year. Surplus biogas will be supplied through an additional 960-m new installation. The cost of biogas is estimated at 30% of the unit biogas production cost. Daejeon Combined Heat and Power plant expects to make 60% additional profit, and Daeduk Industrial Complex and the communities nearby expect to achieve 10% cost savings. It also reduces the dependence of energy on fossil fuels, contributes to national environmental energy policy in reduction in greenhouse gases, creates competitiveness in local business and reduces corporate tax and generates revenue.  相似文献   
4.
Nano-sized apatite particles (nAP) synthesized with carboxymethyl cellulose (CMC) have shown great application potentials in in situ heavy metal remediation. However, differences in CMC’s properties effects on the size of nAP produced are not well understood. In this paper, two types of CMC, with respective molecular weights (MW) of ~120000 and ~240000 Dalton or respective polymerization degrees of 500 (CMC-500) and 1050 (CMC-1050), were studied in a concentration range of 0.05%–0.5% (w/w) for nAP synthesis. Morphology of the particles was characterized with transmission electron microscopy (TEM). Results showed that 0.05% CMC-500 solution gave an average particle size of 148.7±134.9 nm, 0.25% CMC-500 solution produced particles of 21.8±20.4 nm, and, 0.5% CMC-500 solution contained particles of 15.8±7.7 nm. In comparison, 0.05% CMC-1050 solution produced nanoparticles of 6.8±3.2 nm, 0.25% CMC-1050 produced smaller nAP of 4.3±3.2 nm, and 0.5% CMC-1050 synthesized the smallest nanoparticles in this study, with an average diameter of 3.0±2.1 nm. Chemical composition of the products was identified with X-ray diffraction (XRD) as pure hydroxyapatite. Interactions between nAP and CMC were discussed with help of attenuated total reflection Fourier transform infrared (ATRFTIR) spectroscopic data. This study showed that CMC at higher concentration as well as higher MW facilitated to produce finer nanoparticles, showing that nAP size could be manipulated by selecting appropriate CMC MW and/or applying appropriate CMC concentration.  相似文献   
5.
Anthropogenic emissions of sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) exert significant influence on local and regional atmospheric chemistry. Temporal and spatial variability of these gases are investigated using surface measurements by the Central Pollution Control Board (India) during 2005–2009 over six urban locations in and around the Indo-Gangetic Plain (IGP) and supported using the satellite measurements of these gases. The stations chosen are Jodhpur (west of IGP), Delhi (central IGP), Kolkata and Durgapur (eastern IGP), Guwahati (east of IGP), and Nagpur (south of IGP). Among the stations studied, SO2 concentrations are found to be the highest over Kolkata megacity. Elevated levels of NO2 occur over the IGP stations of Durgapur, Kolkata, and Delhi. Columnar NO2 values are also found to be elevated over these regions during winter due to high surface concentrations while columnar SO2 values show a monsoon maximum. Elevated columnar CO over Guwahati during pre-monsoon are attributed to biomass burning. Statistically significant correlations between columnar NO2 and surface NO2 obtained for Delhi, Kolkata, and Durgapur along with very low SO2 to NO2 ratios (≤0.2) indicate fossil fuel combustion from mobile sources as major contributors to the ambient air over these regions.  相似文献   
6.
7.
High-resolution modeling approach is increasingly being considered as a necessary step for improving the monitoring and predictions of regional air quality. This is especially true for highly urbanized region with complex terrain and land-use. This study uses Community Multiscale Air Quality (CMAQ) model coupled with MM5 mesoscale model for a comprehensive analysis to assess the suitability of such high-resolution modeling system in predicting ozone air quality in the complex terrains of Osaka, Japan. The 1-km and 3-km grid domains were nested inside a 9-km domain and the domain with 1-km grid covered the Osaka region. High-resolution Grid Point Value-Mesoscale Model (GPV-MSM) data were used after suitable validation. The simulated ozone concentrations were validated and evaluated using statistical metrics using performance criteria set for ozone. Daily maxima of ozone were found better simulated by the 1-km grid domain than the coarser 9-km and 3-km domains, with the maximum improvement in the mean absolute gross error about 3 ppbv. In addition, 1-km grid results fared better than other grids at most of the observation stations that showed noticeable di erences in gross error as well as correlation. These results amply justify the use of the integrated high-resolution MM5-CMAQ modeling system in the highly urbanized region, such as the Osaka region, which has complex terrain and land-use.  相似文献   
8.

Purpose

Hexachlorocyclohexane (HCH) isomers (??-, ??- and ??- (Lindane)) were recently included as new persistent organic pollutants (POPs) in the Stockholm Convention, and therefore, the legacy of HCH and Lindane production became a contemporary topic of global relevance. This article wants to briefly summarise the outcomes of the Stockholm Convention process and make an estimation of the amount of HCH waste generated and dumped in the former Lindane/HCH-producing countries.

Results

In a preliminary assessment, the countries and the respective amount of HCH residues stored and deposited from Lindane production are estimated. Between 4 and 7 million tonnes of wastes of toxic, persistent and bioaccumulative residues (largely consisting of alpha- (approx. 80%) and beta-HCH) are estimated to have been produced and discarded around the globe during 60 years of Lindane production. For approximately 1.9 million tonnes, information is available regarding deposition. Countries are: Austria, Brazil, China, Czech Republic, France, Germany, Hungary, India, Italy, Japan, Macedonia, Nigeria, Poland, Romania, Slovakia, South Africa, Spain, Switzerland, Turkey, The Netherlands, UK, USA, and former USSR. The paper highlights the environmental relevance of deposited HCH wastes and the related POPs?? contaminated sites and provides suggestions for further steps to address the challenge of the legacy of HCH/Lindane production.

Conclusion

It can be expected that most locations where HCH waste was discarded/stockpiled are not secured and that critical environmental impacts are resulting from leaching and volatilisation. As parties to the Stockholm Convention are legally required to take action to stop further POPs pollution, identification and evaluation of such sites are necessary.  相似文献   
9.
Sustainable use of water and land resources requires that these scarce resources be appropriately allocated among various competing human activities. Worldwide, there is a realization now that sustainable river basin management should be accorded the highest priority, because it deals not only with technical, but also with ecological and socioeconomic aspects, and thus calls for a multidisciplinary and integrated approach. However, most of the policy and planning documents have either remained silent, or have made only implicit reference to the importance of environmental water demand (EWD) and its quantification. Therefore, in the light of its importance, a methodology has been evolved in this article for quantifying EWD for various forested areas in two distinctly different Indian river basins: Brahmani (humid zone) and Sabarmati (dry zone). The article analyzes and discusses EWD estimates at three different spatial levels: river basins, states, and districts within them, and finally presents a comparative analysis of all these results. Findings of the present study will be immensely useful in understanding various ecological issues connected with water resource projects and proposals in these river basins.  相似文献   
10.
Environmental Chemistry Letters - Nanobiotechnology research has recently provided numerous basic and applied advances in the health sector. Nanocarriers have been developed for efficient drug...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号