首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
安全科学   9篇
废物处理   2篇
环保管理   2篇
综合类   3篇
基础理论   12篇
污染及防治   16篇
社会与环境   1篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1994年   2篇
  1983年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
Climate‐change induced uncertainties in future spatial patterns of conservation‐related outcomes make it difficult to implement standard conservation‐planning paradigms. A recent study translates Markowitz's risk‐diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate‐change scenarios for carrying out fine‐resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk‐return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate‐change information and full climate‐change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate‐change forecasts such that the best possible risk‐return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate‐change information could be reduced by 17% relative to other iterative approaches.  相似文献   
2.
依据中日合作项目《加强中国安全生产科学技术能力计划》成果,对比分析了中日对企业安全培训相关法规要求,明确了各自的优点、缺点,提出通过开展企业内安全培训负责人培训可增强企业内安全培训能力,并在宁波进行了试点。提出应当重视企业内安全培训工作,对生产经营单位安全培训规定进行修改,制定配套实施细则和办法,开展企业内安全培训负责人培训、把班组长培训制度化、充分利用外部培训机构等增强企业内安全培训能力的对策和建议。  相似文献   
3.
A numerical study was conducted to predict pCO2 change in the ocean on a continental shelf by the leakage of CO2, which is originally stored in the aquifer under the seabed, in the case that a large fault connects the CO2 reservoir and the seabed by an earthquake or other diastrophism. The leakage rate was set to be 6.025 × 10−4 kg/m2/sec from 2 m × 100 m fault band, which corresponds to 3800 t-CO2/year, referring to the monitored seepage rate from an existing EOR field. The target space in this study was limited to the ocean above the seabed, the depth of which was 200 or 500 m. The computational domain was idealistically rectangular with the seabed fault-band perpendicular to the uniform flow. The CO2 takes a form of bubbles or droplets, depending on the depth of water, and their behaviour and dissolution were numerically simulated during their rise in seawater flow. The advection–diffusion of dissolved CO2 was also simulated. As a result, it was suggested that the leaked CO2 droplets/bubbles all dissolve in the seawater before spouting up to the atmosphere, and that the increase in pCO2 in the seawater was smaller than 500 μ atm.  相似文献   
4.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) have recently received attention due to their widespread contamination in the environment, as well as in wildlife and humans. We measured the PFOS and PFOA concentrations in historically recorded human serum samples at an age range between 20 and 59 years collected in Kyoto, 20 persons per each time point (n=100), and also the PFOS and PFOA concentrations in human serum samples at an age range between 20 and 59 years from 10 locations throughout Japan (n=200). The historical samples collected from 1983 to 1999 demonstrated that the PFOA concentrations in males and females from Kyoto have increased 4.4-fold and 4.3-fold at a rate of increase of 0.49 ng/ml/year and 0.42 ng/ml/year, respectively. In contrast, serum concentrations of PFOS reached a plateau in the late 1980s. There are also regional differences in both the PFOS and PFOA serum concentrations. The concentrations in serum [geometric mean (geometric standard deviation)] (ng/ml) in 2003-2004 ranged from 7.6(1.6) in the town of Matsuoka in Fukui prefecture to 27.8(1.6) in Kyoto city, and ranged from 2.3(1.5) in Matsuoka to 14.5(1.3) in Osaka city for PFOS and PFOA, respectively.  相似文献   
5.
We estimated global future industrial water withdrawal (IWW) by considering socioeconomic driving forces, climate mitigation, and technological improvements, and by using the output of the Asia–Pacific Integrated Model/Computable General Equilibrium (AIM/CGE) model. We carried out this estimation in three steps. First, we developed a sector- and region-specific regression model for IWW. The model utilized and analyzed cross-country panel data using historical statistics of IWW for 10 sectors and 42 countries. Second, we estimated historical IWW by applying a regression model. Third, we projected future IWW from the output of AIM/CGE. For future projections, we considered and included multiple socioeconomic assumptions, namely different shared socioeconomic pathways (SSPs) with and without climate mitigation policy. In all of the baseline scenarios, IWW was projected to increase throughout the twenty-first century, but growth through the latter half of the century is likely to be modest mainly due to the effects of decreased water use intensity. The projections for global total IWW ranged from 461 to 1,560 km3/year in 2050 and from 196 to 1,463 km3/year in 2100. The effects of climate mitigation on IWW were both negative and positive, depending on the SSPs. We attributed differences among scenarios to the balance between the choices of carbon capture and storage (CCS) and renewable energy. A smaller share of CCS was accompanied by a larger share of non-thermal renewable energy, which requires a smaller amount of water withdrawal per unit of energy production. Renewable energy is, therefore, less water intensive than thermal power with CCS with regard to decarbonizing the power system.  相似文献   
6.
ABSTRACT

Although the appropriate supply of nutrients has been extensively researched, more information is required on the effects of nutrients in treating gaseous volatile organic compounds (VOCs) in biofiltration. In this study, the effects of phosphorous and trace metals on gaseous toluene and methyl ethyl ketone (MEK) removal were investigated. The transfer of nutrients from the irrigation liquid to the packed bed, and the consumption and holding amount of nutrients in the packing material were observed during biofiltration. Under conditions of 20–24 s of empty bed residence time, MEK removal was 95% or more in all conditions of the biofiltration reactors, whereas toluene removal was affected by the operating conditions of the reactors. Consumption ratio of phosphorus to carbon was from 1.7 × 10?4 to 1.1 × 10?3 in the steady state of VOC removal under the conditions of this study. When gaseous VOC treatment was restarted after nine days of shutdown, a significant decline in toluene removal was observed by the reactor in which phosphorus supply was approximately one fifth of the amount in another reactor. Two types of irrigation systems, soaking and spraying, were compared and soaking irrigation achieved a more even distribution of nutrients held inside the packed bed. Soaking irrigation was expected to lead to higher VOC removal capacity by this distribution effect of nutrients, but toluene removal in the reactor with this irrigation was lower than that in the reactor with spraying irrigation. One of the possible reasons for this was the inhibition of nutrients transfer in the bottom part of the reactor. The trend of transfer in all ingredients from the irrigation liquid to the packed bed was synchronized on the whole; however, this transfer relatively tended to be high in nitrate and sodium and low in ammonium and phosphate.

Implications: A major concern about using biofiltration systems to treat VOCs is the uncertainty regarding the appropriate nutrient supply to the filter bed to preserve microbial activity. This study showed that all the elements, except nitrogen, were retained sufficiently in the filter bed when a proper composition of nutrient solution was used for irrigation; however, phosphate addition may be needed when restarting a reactor from a prolonged period of shutdown. Distinct differences in the amount of transfer to the filter bed for different ingredients are probable, and may have to be taken into account when operating biofiltration reactors.  相似文献   
7.
8.
The present study reports on the mercury concentrations of the vestimentiferan worm, Lamellibrachia satsuma, (Annelida: Pogonophora) found near hydrothermal vents at a depth of 80-100 m in the northern parts of Kagoshima Bay. The vestimentiferan worms had total mercury concentrations of 238 ng/g in the anterior muscle of the body and 164 ng/g in the posterior trophosome. Methylmercury constituted only 7.6% of total mercury detected anteriorly and 16.3% posteriorly. The mean total mercury concentration in filtrated ambient seawater of the worm habitat was 1.1 ng/l. The worm should accumulate mercury in seawater by a one-step into the anterior and posterior parts as 2.2 x 10(%) and 1.5 x 10(5) times those of the filtered ambient seawater, respectively. The bioaccumulation factor of mercury by the worms with only their respiration would be actually larger than that by other marine animals through food webs. The high bioaccumulation factor of mercury in the worms suggest the following two possibilities: (i) the biological half-life of organomercury in the worm could be exceptionally long; or (ii) the lifetime of vestimentiferan worms examined in the present study could be extremely long. Various metals in one specimen of the worm were analyzed by using ICP-MS, and then gold as well as silver were detected in the worm. Gold was detected for the first time from marine animals.  相似文献   
9.
Total arsenic withdrawn by the four shallow tubewells, used for agricultural irrigation in the arsenic-affected areas of Murshidabad district per year is 6.79 kg (mean: 1.79 kg, range: 0.56-3.53 kg) and the mean arsenic deposition on land per year is 5.02 kg ha(-1) (range: 2-9.81 kg ha(-1)). Mean soil arsenic concentrations in surface, root of plants, below ground level (0-30 cm) and all the soils, collected from four agricultural lands are 14.2 mg/kg (range: 9.5-19.4 mg/kg, n = 99), 13.7 mg/kg (range: 7.56-20.7 mg/kg, n = 99), 14.8 mg/kg (range: 8.69-21 mg/kg, n = 102) and 14.2 mg/kg (range: 7.56-21 mg/kg, n = 300) respectively. Higher the arsenic in groundwater, higher the arsenic in agricultural land soil and plants has been observed. Mean arsenic concentrations in root, stem, leaf and all parts of plants are 996 ng/g (range: <0.04-4850 ng/g, n = 99), 297 ng/g (range: <0.04-2900 ng/g, n = 99), 246 ng/g (range: <0.04-1600 ng/g, n = 99) and 513 ng/g (range: <0.04-4850 ng/g, n = 297) respectively. Approximately 3.1-13.1, 0.54-4.08 and 0.36-3.45% of arsenic is taken up by the root, stem and leaf respectively, from the soil.  相似文献   
10.
Domkal is one of the 19, out of 26 blocks in Murshidabad district where groundwater contains arsenic above 0.05 mg/l. Many millions of cubic meters of groundwater along with arsenic and other heavy metals are coming out from both the hand tubewells, used by the villagers for their daily needs and shallow big diameter tubewells, installed for agricultural irrigation and depositing on soil throughout the year. So there is a possibility of soil contamination which can moreover affect the food chain, cultivated in this area. A somewhat detailed study was carried out, in both micro- and macrolevel, to get an idea about the magnitude of soil contamination in this area. The mean concentrations (mg/kg) of As (5.31), Fe (6740), Cu (18.3), Pb (10.4), Ni (18.8), Mn (342), Zn (44.3), Se (0.53), Mg (534), V (44.6), Cr (33.1), Cd (0.37), Sb (0.29) and Hg (0.54) in fallow land soils are within the normal range. The mean As (10.7), Fe (7860) and Mg (733) concentrations (mg/kg) are only in higher side whereas Hg (0.17 mg/kg) is in lower side in agricultural land soils, compared to the fallow land soils. Arsenic concentrations (11.5 and 28.0 mg/kg respectively) are high in those agricultural land soils where irrigated groundwater contains high arsenic (0.082 and 0.17 mg/l respectively). The total arsenic withdrawn and mean arsenic deposition per land by the 19 shallow tubewells per year are 43.9 kg (mean: 2.31 kg, range: 0.53-5.88 kg) and 8.04 kg ha(-1) (range: 1.66-16.8 kg ha(-1)) respectively. For the macrolevel study, soil arsenic concentration decreases with increase of distance from the source and higher the water arsenic concentration, higher the soil arsenic at any distance. A proper watershed management is urgently required to save the contamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号