首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
污染及防治   5篇
  2016年   1篇
  2013年   2篇
  2000年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT

An apparent increasing trend in the summer concentrations of particulate sulfur at Shenandoah (for the time period 1982-1995) and at Great Smoky Mountains (for the time period 1984-1995) has been pointed out by some researchers. Others have suggested that these increasing trends may be an analytical artifact resulting from the switch from the Stacked Filter Units (SFU) measurement system to the IMPROVE (Interagency Monitoring of Protected Visual Environments) measurement system that occurred during the winter of 1987. To obtain a better understanding of the effect of the protocol change, we investigate the changes in the seasonal averages of sulfur concentrations for successive pairs of years for the period 1980-1996 for about 20 national park sites in the United States. For the period 1980-1987, we use sulfur data from the old (SFU) database and for the period 1988-1996, we use the IMPROVE database. Changes from one year to the next similar to that between 1987 and 1988 occurred during other years and seasons suggesting that chance causes alone could perhaps explain it, the degree to which chance could have caused the changes was measured using the permutation test for matched. At the very least, additional information such as side by side readings using SFU and IMPROVE measurement methods, may be needed to better understand any systematic effect in the sulfur measurements that may be ascribable to the protocol change.  相似文献   
2.
ABSTRACT

Under the IMPROVE visibility monitoring network, federal land managers have monitored visibility and fine particle concentrations at 29 Class I area sites (mostly national parks and wilderness areas) and Washington, DC since 1988. This paper evaluates trends in reconstructed visibility and fine particles for the 10th (best visibility days), 50th (average visibility days), and 90th (worst visibility days) percentiles over the nine-year period from 1988-96. Data from these sites provides an indication of regional trends in air quality and visibility resulting from implementation of various emission reduction strategies.  相似文献   
3.
Under the IMPROVE visibility monitoring network, federal land managers have monitored visibility and fine particle concentrations at 29 Class I area sites (mostly national parks and wilderness areas) and Washington, DC since 1988. This paper evaluates trends in reconstructed visibility and fine particles for the 10th (best visibility days), 50th (average visibility days), and 90th (worst visibility days) percentiles over the nine-year period from 1988-96. Data from these sites provides an indication of regional trends in air quality and visibility resulting from implementation of various emission reduction strategies.  相似文献   
4.
A range of pesticides are available in Australia for use in agricultural and domestic settings to control pests, including organophosphate and pyrethroid insecticides, herbicides, and insect repellents, such as N,N-diethyl-meta-toluamide (DEET). The aim of this study was to provide a cost-effective preliminary assessment of background exposure to a range of pesticides among a convenience sample of Australian residents. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n = 24 pools of 100 specimens). Concentrations of urinary pesticide biomarkers were quantified using solid-phase extraction coupled with isotope dilution high-performance liquid chromatography–tandem mass spectrometry. Geometric mean biomarker concentrations ranged from <0.1 to 36.8 ng/mL for organophosphate insecticides, <0.1 to 5.5 ng/mL for pyrethroid insecticides, and <0.1 to 8.51 ng/mL for all other biomarkers with the exception of the DEET metabolite 3-diethylcarbamoyl benzoic acid (4.23 to 850 ng/mL). We observed no association between age and concentration for most biomarkers measured but noted a “U-shaped” trend for five organophosphate metabolites, with the highest concentrations observed in the youngest and oldest age strata, perhaps related to age-specific differences in behavior or physiology. The fact that concentrations of specific and non-specific metabolites of the organophosphate insecticide chlorpyrifos were higher than reported in USA and Canada may relate to differences in registered applications among countries. Additional biomonitoring programs of the general population and focusing on vulnerable populations would improve the exposure assessment and the monitoring of temporal exposure trends as usage patterns of pesticide products in Australia change over time.  相似文献   
5.
An apparent increasing trend in the summer concentrations of particulate sulfur at Shenandoah (for the time period 1982-1995) and at Great Smoky Mountains (for the time period 1984-1995) has been pointed out by some researchers. Others have suggested that these increasing trends may be an analytical artifact resulting from the switch from the Stacked Filter Units (SFU) measurement system to the IMPROVE (Interagency Monitoring of Protected Visual Environments) measurement system that occurred during the winter of 1987. To obtain a better understanding of the effect of the protocol change, we investigate the changes in the seasonal averages of sulfur concentrations for successive pairs of years for the period 1980-1996 for about 20 national park sites in the United States. For the period 1980-1987, we use sulfur data from the old (SFU) database and for the period 1988-1996, we use the IMPROVE database. Changes from one year to the next similar to that between 1987 and 1988 occurred during other years and seasons suggesting that chance causes alone could perhaps explain it, the degree to which chance could have caused the changes was measured using the permutation test for matched. At the very least, additional information such as side by side readings using SFU and IMPROVE measurement methods, may be needed to better understand any systematic effect in the sulfur measurements that may be ascribable to the protocol change.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号