首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
废物处理   1篇
环保管理   2篇
综合类   1篇
环境理论   1篇
污染及防治   32篇
评价与监测   3篇
社会与环境   6篇
  2016年   1篇
  2014年   1篇
  2013年   17篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1991年   2篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有46条查询结果,搜索用时 265 毫秒
1.
The Kanawha Valley region of West Virginia which is comprised of Charleston and surrounding communities Is the center of a heavily industrialized area known for its chemical manufacturing. As part of a larger study designed to investigate the Impact of the chemical industry on human exposures to volatile organic compounds (VOC), a study of the relationship between indoor and outdoor concentrations was conducted. Thirty-five homes were selected for monitoring from among volunteers; approximately ten in each of three distinct population-industry centers and four outside the Valley to act as controls. Monitoring was performed using passive, badge samplers with a three-week monitoring period. Two separate questionnaires were administered: one for characterization of the residence; and one to characterize source use during monitoring. Participants were also asked to keep a record of their activities with respect to in-home, outdoors and other Indoor environments. Analysis of the samplers was performed by solvent extraction followed by gas chromatography using a flame-ionization detector. Results suggest that indoor VOC concentrations are higher than outdoor concentrations. Additionally, certain ventilation-related parameters were identified that afforded some predictive power for indoor concentrations. No statistically significant differences between regions were identified.  相似文献   
2.
ABSTRACT

In order to characterize typical indoor exposures to chemicals of interest for research on breast cancer and other hormonally mediated health outcomes, methods were developed to analyze air and dust for target compounds that have been identified as animal mammary carcinogens or hormonally active agents and that are used in commercial or consumer products or building materials. These methods were applied to a small number of residential and commercial environments to begin to characterize the extent of exposure to these classes of compounds. Phenolic compounds, including nonylphenol, octylphenol, bisphenol A, and the methoxychlor metabolite 2,2-bis (p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), were extracted, derivatized, and analyzed by gas chromatography/mass spectrometry (GC/MS)–selective ion monitoring (SIM). Selected phthalates, pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were extracted and analyzed by GC/MS-SIM. Residential and workplace samples showed detectable levels of twelve pesticides in dust and seven in air samples. Phthalates were abundant in dust (0.3524 μg/g) and air (0.005-2.8 μg/m3). Nonylphenol and its mono- and di-ethoxylates were prevalent in dust (0.82-14 μg/g) along with estrogenic phenols such as bisphenol A and o-phenyl phenol. In this 7-sample pilot study, 33 of 86 target compounds were detected in dust, and 24 of 57 target compounds were detected in air. In a single sample from one home, 27 of the target compounds were detected in dust and 15 in air, providing an indication of chemical mixtures to which humans are typically exposed.  相似文献   
3.
The results of more than 1 yr of air monitoring inside and outside of five homes in each of two communities are presented for SO2, NO2, mass respirable particles, SO4, Al, Br, Cl, Mn, Na, and V. Outdoor measurements across the home site in each city are consistent with proximity to outdoor sources. Looking across indoor residential sites in each city, the home appears to alter outdoor concentrations in several ways. Indoor level of SO2, SO4, Mn, and V are lower than those measured outdoors. These constituents are thought generally to result from outdoor sources. The other constituents studied are at times found in excess within homes. In some cases the source or sources of excess concentration of a particular constituent could be identified; often, however, the source of excess indoor concentration could not be identified.  相似文献   
4.
An ozone (O3) exposure study was conducted in Nashville, TN, using passive O3 samplers to measure six weekly outdoor, indoor, and personal O3 exposure estimates for a group of 10- to 12-yr-old elementary school children. Thirty-six children from two Nashville area communities (Inglewood and Hendersonville) participated in the O3 sampling program, and 99 children provided additional time-activity information by telephone interview. By design, this study coincided with the 1994 Nashville/Middle Tennessee Ozone Study conducted by the Southern Oxidants Study, which provided enhanced continuous ambient O3 monitoring across the Nashville area. Passive sampling estimated weekly average outdoor O3 concentrations from 0.011 to 0.O30 ppm in the urban Inglewood community and from 0.015 to 0.042 ppm in suburban Hendersonville. The maximum 1- and 8-hr ambient concentrations encountered at the Hendersonville continuous monitor exceeded the levels of the 1- and 8-hr metrics for the O3 National Ambient Air Quality Standard. Weekly average personal O3 exposures ranged from 0.0013 to 0.0064 ppm (7-31% of outdoor levels). Personal O3 exposures reflected the proportional amount of time spent in indoor and outdoor environments. Air-conditioned homes displayed very low indoor O3 concentrations, and homes using open windows and fans for ventilation displayed much higher concentrations.  相似文献   
5.
6.
Older fossil-fueled power plants provide a significant portion of emissions of criteria air pollutants in the United States, in part because these facilities are not required to meet the same emission standards as new sources under the Clean Air Act. Pending regulations for older power plants need information about any potential public health benefits of emission reductions, which can be estimated by combining emissions information, dispersion modeling, and epidemiologic evidence. In this article, we develop an analytical modeling framework that can evaluate health benefits of emission controls, and we apply our model to two power plants in Massachusetts. Using the CALPUFF atmospheric dispersion model, we estimate that use of Best Available Control Technology (BACT) for NOx and SO2 would lead to maximum annual average secondary particulate matter (PM) concentration reductions of 0.2 microg/m3. When we combine concentration reductions with current health evidence, our central estimate is that the secondary PM reductions from these two power plants would avert 70 deaths per year in a population of 33 million individuals. Although benefit estimates could differ substantially with different interpretations of the health literature, parametric perturbations within CALPUFF and other simple model changes have relatively small impacts from an aggregate risk perspective. While further analysis would be required to reduce uncertainties and expand on our analytical model, our framework can help decision-makers evaluate the magnitude and distribution of benefits under different control scenarios.  相似文献   
7.
Lung SC  Altshul LM  Ford TE  Spengler JD 《Chemosphere》2000,41(12):1865-1871
The effects of coating materials on polychlorinated biphenyl (PCB) adsorption in aqueous solution were assessed in an attempt to minimize PCB sorption loss during sampling processes. A coating material, which enhances PCB adsorption and allows adsorbed PCBs to be readily extracted by solvents, can act as a sampling concentrator to reduce PCB losses from both adsorption and evaporation. Several coating materials were evaluated, including paraffin oil, silicone oil, dimethyldichlorosilane (Sylon-CT), Prosil 28® and polydimethylsiloxane (PDS) with viscosity 0.65, 50 (PDS 50), and 500 (PDS 500) cSt. PDS and silicone oil enhanced adsorption for all five congeners examined (IUPAC No. 28, 52, 101, 138, and 180). Sylon-CT, paraffin oil and Prosil 28® had inconsistent effects on adsorption of different congeners. Desorption of adsorbed PCBs onto all coating types was assessed. The recovery efficiency of extracting PCBs with solvents was enhanced greatly with all coatings as opposed to non-coated surfaces, with the exception of paraffin oil. Coating with silicon oil, PDS 50, and 500 resulted in virtually 100% recovery of adsorbed PCBs. It was also found that Teflon containers were poor substitutes for glass containers and failed to minimize PCB losses. Among the materials studied, the best coating that could be used as a sampling concentrator was PDS 500.  相似文献   
8.
Abstract

Twenty-four communities in North America were monitored over one year for a variety of air pollutants as part of a crosssectional epidemiological study on the respiratory health effects of exposure to fine particle acidity. The relationships between these single-year observations and the long-term community levels of ambient sulfate and acidity were examined. In the health study it was assumed that the singleyear measurements were indicative of the lifetime or long-term exposures of the participants (eight?, nine?, and ten-year-olds). Therefore, a strong relationship between the long-term and single-year (24-community) particle acidity and sulfate concentrations was important.

Ambient sulfate data from a variety of alternate sources were obtained from monitoring sites close to 20 of the 24 communities. Long-term averages, which were determined for the warm season (May to September), were derived from a minimum of four complete years of monitoring data at each site. Long-term acidity concentrations were derived from these sulfate data because multi-year measurements of acidity were not available. These concentrations were calculated by multiplying the sulfate concentrations by the mean warm season acid-to-sulfate ratios observed during the 24-community study. For each community, 25 random estimates (determined by allowing the observed mean ratio to vary randomly by ±0.2) of the mean warm season acidity were used to determine the community-to-community differences in the long-term acid concentrations.

Overall, the long-term and 24-community warm season sulfate concentrations were correlated with an R2, determined from linear regression, of 0.92 (slope = 0.90±0.13). With only two exceptions, regardless of which of these exposure estimates were used, the communities that were determined to experience high (>8 μg m?3), moderate (4-8 μg m?3) and low (<4 μg m?3) sulfate exposures did not change. Similarly, few communities crossed exposure classes when the long-term and short-term acid concentrations were compared. However, due to the increased uncertainty arising from the lack of information on the long-term acid-to-sulfate ratio, the average correlation (R2) between the long-term and 24-community exposure estimates (the mean of the 25 separate random estimates for each community) was 0.85 (slope = 0.94).  相似文献   
9.
10.
Despite strong longitudinal associations between particle personal exposures and ambient concentrations, previous studies have found considerable inter-personal variability in these associations. Factors contributing to this inter-personal variability are important to identify in order to improve our ability to assess particulate exposures for individuals. This paper examines whether ambient, home outdoor and home indoor particle concentrations can be used as proxies of corresponding personal exposures. We explore the strength of the associations between personal, home indoor, home outdoor and central outdoor monitoring site ("ambient site") concentrations of sulfate, fine particle mass (PM(2.5)) and elemental carbon (EC) by season and subject for 25 individuals living in the Boston, MA, USA area. Ambient sulfate concentrations accounted for approximately 70 to 80% of the variability in personal and indoor sulfate levels. Correlations between ambient and personal sulfate, however, varied by subject (0.1-1.0), with associations between personal and outdoor sulfate concentrations generally mirroring personal-ambient associations (median subject-specific correlations of 0.8 to 0.9). Ambient sulfate concentrations are good indicators of personal exposures for individuals living in the Boston area, even though their levels may differ from actual personal exposures. The strong associations for sulfate indicate that ambient concentrations and housing characteristics are the driving factors determining personal sulfate exposures. Ambient PM(2.5) and EC concentrations were more weakly associated with corresponding personal and indoor levels, as compared to sulfate. For EC and PM(2.5), local traffic, indoor sources and/or personal activities can significantly weaken associations with ambient concentrations. Infiltration was shown to impact the ability of ambient concentrations to reflect exposures with higher exposures to particles from ambient sources during summer. In contrast in the winter, lower infiltration can result in a greater contribution of indoor sources to PM(2.5) and EC exposures. Placing EC monitors closer to participants' homes may reduce exposure error in epidemiological studies of traffic-related particles, but this reduction in exposure error may be greater in winter than summer. It should be noted that approximately 20% of the EC data were below the field limit of detection, making it difficult to determine if the weaker associations with the central site for EC were merely a result of methodological limitations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号