首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   1篇
评价与监测   2篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The effects of the long-term contamination of water reservoirs with mine effluents were investigated at an abandoned mine site in Upper Silesia, southern Poland. The studies covered metal content and mobility in bottom sediments as well as water chemistry in relation to the content of metals in selected macrophytes and their physiology and the composition of phyto- and zooplankton communities. Although it is 40 years since mining ceased, reservoir sediments are still heavily contaminated with cadmium, zinc and lead with concentrations (mg/kg), which vary roughly between 130–340, 10,000–50,000 and 4,000–12,000, respectively. About 50–80 % of these elements are associated with the reducible phase, and only a small percentage, <10 %, is present in the most mobile exchangeable phase. Despite the high total metal concentration in sediments, their content in the submerged plants Myriophyllum spicatum and the emerged plants Phragmites australis was low. The observed effects of heavy metal contamination on photosynthetic activity in the leaves of P. australis were negligible, whereas those in M. spicatum show up only as a difference in the distribution of photosynthetic activity in leaves of different ages, which seems to be related to the very good water quality and to the generally small concentrations of metals in pond water. The physicochemical properties of water also seem to control the presence of planktonic species more than does sediment contamination. However, a shift toward groups of species known to be more resistant to heavy metals (diatoms, green algae and Rotifera) indicates some adaptative changes related to the long-lasting contamination of ponds.  相似文献   
2.

This study focuses on the Dombrovska pit lake, near the city of Kalush in Ukraine, which is a former potassium salt mine filled with brine and freshwater. The water level is still increasing and as a result the salinity is decreasing. We analyzed the benthic fauna communities and the genome instability by assessing the rearrangements in the polytene chromosomes of Chironomus salinarius and the physicochemical parameters of the near-bottom water (pH, conductivity, mineralization, major ions, NO3, NH4+, metals Cd, Pb, Cu, Mn, and Fe) and sediment (pH, organic matter and metals Cd, Pb, Cu, Zn, Mn, and Fe) at four sites. The water mineralization ranged from 17.3 to 26.2 g dm−3 which are classified as mesohaline and polyhaline waters, respectively. The biodiversity of the benthic fauna was low, and the dominant species was C. salinarius. The density of C. salinarius varied spatially and changed from 637 ind./m2 at a depth of 5 m to 8167 ind./m2 at a depth of 2.5 m. The genome instability was analyzed by examining the structural and functional changes in the salivary gland chromosomes of C. salinarius. The exposure of C. salinarius damaged the chromosomes and the activities of key structures, such as the Balbiani ring and nucleolar organizer, were partially or completely suppressed.

  相似文献   
3.
The investigation was carried out on a small pond situated on a recent mine spoil at Bolesław in the Olkusz region with Zn–Pb ore deposits. Water of the pond had pH 7.2–8.5 and low concentrations of heavy metals. Concentrations of Pb (487 μg g − 1) and Zn (1,991 μg g − 1) in the sediment were very high and potentially could lead to toxicological effects. In the pond, 48 taxa of macroinvertebrates belonging to Oligochaeta and water stages of Ephemeroptera, Odonata, Megaloptera, Trichoptera, Heteroptera, Coleoptera and Diptera (mainly Chironomidae family) were found. The influence of heavy metals on macroinvertebrates diversity was not found. Effect of heavy metal pollution was observed on the appearance of chromosome aberrations in the polytene chromosomes of Chironomidae larvae. It was manifested by two ways: (1) in Kiefferulus tendipediformis and Chironomus sp. chromosome rearrangements in fixed state (tandem fusion and homozygous inversions), indicated intensive process of speciation; (2) in Chironomus sp., K. tendipediformis, Glyptotendipes gripekoveni (Chironomidae) somatic chromosome rearrangements (inversions, deficiencies, specific puffs, polyploidy) affected few cells of every individual. The somatic functional and structural alterations in Chironomidae species are particular suitable as biomarkers—they can be easily identified and used for detecting toxic agents in the environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号