首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   3篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The present review describes some aspects of organization of biodegradative pathways of Nocardioform microorganisms, first of all, with respect to their ability to degrade aromatic compounds, mostly methylbenzoate, chlorosubstituted phenols, and chlorinated biphenyls and the intermediates of their transformation: 4-chlorobenzoate and para-hydroxybenzoate. Various enzyme systems induced during degradation processes are defined. The ability of microorganisms to induce a few key enzymes under the influence of xenobiotics is described. This ability may increase the biodegradative potential of strains allowing them to survive in the changing environment or demonstrate to some extent the unspecific response of microorganisms to the effect of toxicants. Nocardioform microorganisms responsible for degradation of such persistent compounds as polychlorinated biphenyls, polyaromatic hydrocarbons, chlorinated benzoates and phenols and other xenobiotics are characterized. The possibility of using Nocardioform microorganisms in some aspects of biotechnology due to their ability to produce some compounds important for industry is also estimated.  相似文献   
2.
3,4-Dichloro- and 3,4-difluoroanilines were degraded by Pseudomonas fluorescens 26-K under aerobic conditions. In the presence of glucose strain degraded 170 mg/L of 3,4-dichloroaniline (3,4-DCA) during 2-3 days. Increasing of toxicant concentration up to 250 mg/L led to degradation of 3,4-DCA during 4 days and its intermediates during 5-7 days. Without cosubstrate and nitrogen source degradation of 3,4-DCA took place too, but more slowly--about 40% of toxicant at initial concentration 75 mg/L was degraded during 15 days. 3,4-Difluoroaniline (3,4-DFA) (initial concentration 170 mg/L) was degraded by Pseudomonas fluorescens 26-K during 5-7 days. The strain was able to completely degrade up to 90 mg/L of 3,4-DFA, without addition of cosubstrate and nitrogen during 15 days. Degradation of fluorinated aniline was accompanied by intensive defluorination. Activity of catechol 2,3-dioxygenase (C2,3DO) (0.230 micromol/min/mg of protein) was found in the culture liquid of the strain, grown with 3,4-DCA and glucose. This fact, as well as, the presence of 3-chloro-4-hydroxyaniline as a metabolite suggested that 3,4-DCA degradation pathway includes dehalogenation and hydroxylation of aromatic ring followed by its subsequent cleaving by C2,3DO. On the contrary, activity of catechol 1,2-dioxygenase (C1,2DO) (0.08 micromol/min/mg of protein) was found in the cell-free extract of biomass grown on 3,4-DFA. 3-Fluoro-4-hydroxyaniline as intermediate was found in this cell-free extract.  相似文献   
3.
Several peripheral metabolic pathways can be used by microorganisms to degrade toxic aromatic compounds that are known to pollute the environment. Hydroxyquinol (1,2,4-trihydroxybenzene) is one of the central intermediates in the degradative pathway of a large variety of aromatic compounds. The present review describes the microorganisms involved in the degradative pathway, the key enzymes involved in the formation and splitting of the aromatic ring of (chloro)hydroxyquinol as well as the central intermediates formed. An attempt was also made to provide some estimation for genetic basis of the hydroxyquinol pathway.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号