首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   3篇
  2017年   1篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  1980年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
A biomonitoring survey using the moss species Hypnum cupressiforme Hedw. was conducted in the surroundings of two steel plants located in the North of Spain. Levels of V, Cr, Ni, Cu, Zn, As, Cd, Hg, Pb and N were determined. Very high concentrations in the areas of study were detected when compared to nearby unaffected regions. Similar trends were observed for all the elements in the differently orientated transects, showing an appreciable influence of the NW prevailing winds of the region in the dispersion of pollutants, as well as a clear decreasing gradient in the concentrations of metals in mosses within a distance of 1500 meters from the facilities. A differentiation between the elements emitted by the chimney as result of the industrial activity (V, Cr, Ni, Cu and As) and those with a high presence in steel slag deposits (Zn, Cd, Hg and Pb) was observed. The range of contamination was also established by means of the Contamination Factor, indicating a category 4 out of 6 categories, which shows the high levels reported in the areas of study. A different dynamic was registered for nitrogen regarding the rest of the heavy metals analysed except for Hg, probably due to the elevated volatility and mobility of both elements, as well as their high persistence in the atmosphere.  相似文献   
2.
3.
Tront JM  Saunders FM 《Chemosphere》2006,64(3):400-407
Aquatic plants uptake, transform and sequester organic contaminants and are used as a bioremediation strategy for the removal of pollutants from wastewaters. A better understanding of factors affecting rate of uptake of contaminants by aquatic plants is needed to improve engineered systems for removal of pollutants from wastewaters. This work focused on delineating sorption to plant surfaces and understanding effects of plant metabolic activity, inhibition, and media pH on the uptake of the ionizable contaminant 2,4,5-trichlorophenol (TCP) by aquatic plant Lemna minor. During L. minor exposure to TCP (0.5-13.9 mg l(-1)), a range of plant metabolic activities was measured using oxygen production rate (0-18.4 micromol h(-1)). A positive correlation was shown between contaminant uptake rate and plant activity. Contaminant uptake was examined at a range of media pH values (6-9) and uptake rates were linearly correlated to fraction of contaminant in protonated form. These results demonstrated a link between plant activity and uptake of contaminant by plants and stress the importance of incorporating plant metabolic activity and contaminant speciation in development of natural and engineered phytoremediation systems. This research also indicates that aquatic plants can actively accumulate trace-organic contaminants and may ultimately serve as a sink for these materials in the natural environment.  相似文献   
4.
Book reviews     
  相似文献   
5.
Sand dunes are complex systems that contain several habitats, often as mosaics or transitions between types. Several of these habitats are afforded protection under European Legislation and in the UK nationally within Special Areas of Conservation (SAC) and Sites of Special Scientific Interest (SSSI). Natural England has a statutory duty to report to Europe on the conservation status and condition of sand dunes; and is required to report to the UK Government on designated sites. To achieve this we have sought ways of capturing, analysing and interpreting data on the extent and location of sand dune habitats. This requires an ability to be able to obtain data over large areas of coastline in an efficient way. Natural England and Environment Agency Geomatics have worked collaboratively for over 16 years, sharing data and ecological knowledge. In 2012 work started to evaluate the use of remote sensing to map UK BAP and Annex I sand dune habitats. A methodology has now been developed and tested to map sand dune habitats. The key objective was to provide an operational tool that will help to map these habitats and understand change on sites around England. This has been achieved through analysis of LIDAR and Compact Airborne Spectrographic Imager (CASI) data using Object Orientated Image Analysis. Quality Control (QC) and accuracy assessments have shown this approach to be successful and 11 sites have been mapped to date. These techniques are providing a new approach to monitoring change in coastal vegetation communities and informing management of protected sites.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号