首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   2篇
社会与环境   1篇
  2017年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
To elucidate mechanisms of Cr3+ sorption onto the unaltered solid natural organic matter, the comparative studies of this ion binding from a solution at pH 4.0 onto three selected particle size fractions: 2000–1000 μm, 630–200 μm and 63–20 μm of markedly different HS content and structure, separated by a wet sieving from an overall sample of peat (Brushwood Peat Humus) were carried out. Comparable patterns of COOH groups and CECt confirmed that for cation exchange capacity were responsible mainly cations connected with COO functional groups. It was though found that aliphatic acids in the solid state did not take part in Cr3+ binding, thus the finest studied fraction 63–20 μm of the highest contents of functional groups showed the lowest sorption capacity for Cr3+, while similar patterns of sorbed Cr3+, soluble HS content and base CEC0 indicated that these parameters were directly interrelated. The base ion exchange processes determined by CEC0 (with Ca2+ as a predominant exchangeable cation) appeared to be not the major mechanisms responsible for Cr3+ sorption. For this metal, strong binding to insoluble large molecular weight organic pool two- to threefold prevailed over the ion exchange processes. Very low acid desorption indicated generally low mobility of Cr3+-organic compounds.  相似文献   
2.
The effect of complexing anion and adsorbate-adsorbent contact mode (static equilibrium or dynamic non-equilibrium) on binding and partition of Cu(2+), Cd(2+) and Zn(2+) onto organic matter (exemplified in a low-moor peat) was studied. The study comprised comparative batch and column flow-through sorption experiments on monometallic solutions of Me-Cl and Me-SO(4) salts, at pH 4.0, and sequential fractionation of sorbed metals with respect to binding strength. Both the presence of an anion having complexing properties (Cl(-)) as well as a contact mode was found to quantitatively and qualitatively affect the sorption capacity and binding strength of organic matter (peat) for metal ions. Complexing effect of Cl(-) on metal ions resulted mostly in reduction of metal ability to form strongly bound metal-organic compounds, in accordance with the order of stability constant of complex ions log K: Cd>Zn>Cu. Flow-through (dynamic) contact mode, which is the most appropriate to simulate environmental conditions, appeared to strongly attenuate the complexing effect of chloride ions on Cd and Zn sorption, and significantly enhance sorption capacity also in the absence of complexing ions. For Cd, it was mainly due to the enrichment in the strongly bound "insoluble organic" fraction, while for Zn the quantitative increase of sorption capacity did not alter significantly its partitioning. Neither a quantitative nor qualitative effect of contact mode on Cu binding was observed. Complex and diverse effects of different environmental parameters on metal sorption capacity and binding strength onto organic matter, which strongly influence metal mobility, leads to the conclusion that the correct simulation of these parameters for ecotoxicological testing is crucial for the reliable predicting of metal bioavailability under actual terrestrial environmental conditions.  相似文献   
3.
Environmental Science and Pollution Research - Phytoremediation with the use of hyperaccumulating plant species to remove excess trace metals from contaminated soil and water is considered a...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号