首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
污染及防治   2篇
  2003年   2篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT: This paper presents the results of a study on the use of continuous stage data to describe the relation between urban development and three aspects of hydrologic condition that are thought to influence stream ecosystems—overall stage variability, stream flashiness, and the duration of extreme‐stage conditions. This relation is examined using data from more than 70 watersheds in three contrasting environmental settings—the humid Northeast (the metropolitan Boston, Massachusetts, area); the very humid Southeast (the metropolitan Birmingham, Alabama, area); and the semiarid West (the metropolitan Salt Lake City, Utah, area). Results from the Birmingham and Boston studies provide evidence linking increased urbanization with stream flashiness. Fragmentation of developed land cover patches appears to ameliorate the effects of urbanization on overall variability and flashiness. There was less success in relating urbanization and streamflow conditions in the Salt Lake City study. A related investigation of six North Carolina sites with long term discharge and stage data indicated that hydrologic condition metrics developed using continuous stage data are comparable to flow based metrics, particularly for stream flashiness measures.  相似文献   
2.
Large-scale column experiments were undertaken to evaluate the potential of in situ polymer mats to deliver oxygen into groundwater to induce biodegradation of the pesticides atrazine, terbutryn and fenamiphos contaminating groundwater in Perth, Western Australia. The polymer mats, composed of woven silicone (dimethylsiloxane) tubes and purged with air, were installed in 2-m-long flow-through soil columns. The polymer mats proved efficient in delivering dissolved oxygen to anaerobic groundwater. Dissolved oxygen concentrations increased from <0.2 mg l(-1) to approximately 4 mg l(-1). Degradation rates of atrazine in oxygenated groundwater were relatively high with a zero-order rate of 240-380 microg l(-1) or a first-order half-life of 0.35 days. Amendment with an additional carbon source showed no significant improvement in biodegradation rates, suggesting that organic carbon was not limiting biodegradation. Atrazine degradation rates estimated in the column experiments were similar to rates determined in laboratory culture experiments, using pure cultures of atrazine-mineralising bacteria. No significant degradation of terbutryn or fenamiphos was observed under the experimental conditions within the time frames of the study. Results from these experiments indicate that remediation of atrazine in a contaminated aquifer may be achievable by delivery of oxygen using an in situ polymer mat system.  相似文献   
3.
Although petroleum contamination has been identified at many Antarctic research stations, and is recognized as posing a significant threat to the Antarctic environment, full-scale in situ remediation has not yet been used in Antarctica. This is partly because it has been assumed that temperatures are too low for effective biodegradation. To test this, the effects of temperature on the hydrocarbon mineralisation rate in Antarctic terrestrial sediments were quantified. 14C-labelled octadecane was added to nutrient amended microcosms that were incubated over a range of temperatures between -2 and 42 degrees C. We found a positive correlation between temperature and mineralisation rate, with the fastest rates occurring in samples incubated at the highest temperatures. At temperatures below or near the freezing point of water there was a virtual absence of mineralisation. High temperatures (37 and 42 degrees C) and the temperatures just above the freezing point of water (4 degrees C) showed an initial mineralisation lag period, then a sharp increase in the mineralisation rate before a protracted plateau phase. Mineralisation at temperatures between 10 and 28 degrees C had no initial lag phase. The high rate of mineralisation at 37 and 42 degrees C was surprising, as most continental Antarctic microorganisms described thus far have an optimal temperature for growth of between 20 and 30 degrees C and a maximal growth temperature <37 degrees C. The main implications for bioremediation in Antarctica from this study are that a high-temperature treatment would yield the most rapid biodegradation of the contaminant. However, in situ biodegradation using nutrients and other amendments is still possible at soil temperatures that occur naturally in summer at the Antarctic site we studies (Casey Station 66 degrees 17(') S, 110 degrees 32(') E), although treatment times could be excessively long.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号