首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
污染及防治   5篇
  2013年   2篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Analyses of ambient measured ozone data were used in conjunction with the application of photochemical modeling to determine the technical feasibility of attaining the federal 8-hr ozone standard in central California. Various combinations of volatile organic compound (VOC) and oxides of nitrogen (NOx) emission reductions were effective in lowering modeled peak 1-hr ozone concentrations. However, VOC emissions reductions were found to have only a modest impact on modeled peak 8-hr ozone concentrations. NOx emission reductions generally lowered 8-hr ozone concentrations, but their effectiveness was partially or, in some cases, wholly offset by the increase in the number of NO cycles and, hence, in the ozone produced per NO. As a result, substantial NOx emission reductions--70 to 90%--were required to reduce peak 8-hr ozone concentrations to the level of the standard throughout the modeling domain. These modeling results provide a possible physical explanation for recent analyses that have reported more prominent trends in peak 1-hr ozone levels than in peak 8-hr ozone concentrations or in occurrences of mid-level (60-90 parts per billion by volume) ozone concentrations. The findings also have serious implications for the feasibility of attaining the 8-hr ozone standard in central California. Further efforts are needed to clarify the applicability of the modeling results to the full set of days with ozone levels exceeding the 8-hr ozone standard, as well as their applicability to other geographical areas.  相似文献   
2.
A thermodynamic equilibrium model was used to investigate the response of aerosol NO3 to changes in concentrations of HNO3, NH3, and H2SO4. Over a range of temperatures and relative humidities (RHs), two parameters provided sufficient information for indicating the qualitative response of aerosol NO3. The first was the excess of aerosol NH4+ plus gas-phase NH3 over the sum of HNO3, particulate NO3, and particulate SO4(2-) concentrations. The second was the ratio of particulate to total NO3 concentrations. Computation of these quantities from ambient measurements provides a means to rapidly analyze large numbers of samples and identify cases in which inorganic aerosol NO3 formation is limited by the availability of NH3. Example calculations are presented using data from three field studies. The predictions of the indicator variables and the equilibrium model are compared.  相似文献   
3.
Analyses of ozone (O3) measurements in conjunction with photochemical modeling were used to assess the feasibility of attaining the federal 8-hr O3 standard in the eastern United States. Various combinations of volatile organic compound (VOC) and oxides of nitrogen (NOx) emission reductions were effective in lowering modeled peak 1-hr O3 concentrations. VOC emissions reductions alone had only a modest impact on modeled peak 8-hr O3 concentrations. Anthropogenic NOx emissions reductions of 46-86% of 1996 base case values were needed to reach the level of the 8-hr standard in some areas. As NOx emissions are reduced, O3 production efficiency increases, which accounts for the less than proportional response of calculated 8-hr O3 levels. Such increases in O3 production efficiency also were noted in previous modeling work for central California. O3 production in some urban core areas, such as New York City and Chicago, IL, was found to be VOC-limited. In these areas, moderate NOx emissions reductions may be accompanied by increases in peak 8-hr O3 levels. The findings help to explain differences in historical trends in 1- and 8-hr O3 levels and have serious implications for the feasibility of attaining the 8-hr O3 standard in several areas of the eastern United States.  相似文献   
4.
Abstract

Analyses of ozone (O3) measurements in conjunction with photochemical modeling were used to assess the feasibility of attaining the federal 8-hr O3 standard in the eastern United States. Various combinations of volatile organic compound (VOC) and oxides of nitrogen (NOx) emission reductions were effective in lowering modeled peak 1-hr O3 concentrations. VOC emissions reductions alone had only a modest impact on modeled peak 8-hr O3 concentrations. Anthropogenic NOx emissions reductions of 46–86% of 1996 base case values were needed to reach the level of the 8-hr standard in some areas. As NOx emissions are reduced, O3 production efficiency increases, which accounts for the less than proportional response of calculated 8-hr O3 levels. Such increases in O3 production efficiency also were noted in previous modeling work for central California. O3 production in some urban core areas, such as New York City and Chicago, IL, was found to be VOC-limited. In these areas, moderate NOx emissions reductions may be accompanied by increases in peak 8-hr O3 levels. The findings help to explain differences in historical trends in 1- and 8-hr O3 levels and have serious implications for the feasibility of attaining the 8-hr O3 standard in several areas of the eastern United States.  相似文献   
5.
ABSTRACT

A thermodynamic equilibrium model was used to investigate the response of aerosol NO3 to changes in concentrations of HNO3, NH3, and H2SO4. Over a range of temperatures and relative humidities (RHs), two parameters provided sufficient information for indicating the qualitative response of aerosol NO3. The first was the excess of aerosol NH4 + plus gas-phase NH3 over the sum of HNO3, particulate NO3, and particulate SO4 2- concentrations. The second was the ratio of particulate to total NO3 concentrations. Computation of these quantities from ambient measurements provides a means to rapidly analyze large numbers of samples and identify cases in which inorganic aerosol NO3 formation is limited by the availability of NH3. Example calculations are presented using data from three field studies. The predictions of the indicator variables and the equilibrium model are compared.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号