首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  国内免费   49篇
安全科学   1篇
废物处理   1篇
综合类   57篇
基础理论   9篇
污染及防治   6篇
评价与监测   5篇
  2024年   7篇
  2023年   10篇
  2022年   12篇
  2021年   13篇
  2020年   14篇
  2019年   4篇
  2018年   4篇
  2015年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  1998年   1篇
  1992年   2篇
排序方式: 共有79条查询结果,搜索用时 296 毫秒
1.
本文介绍用微生物膜传感器及测试系统快速测定BOD低于1Omg/L地面水BOD的最佳测定条件、影响因素等,提出用磷酸盐缓冲溶液体系控制水样基体干扰的测定方法.用该方法与BOD_5法同步测定地面水样,测定结果具有较好的相关性.  相似文献   
2.
利用苏码罐采样-气相色谱/质谱联用仪(GC/MS)监测石家庄市2019年、 2021年和2022年春季挥发性有机物(VOCs),并收集同期臭氧(O3)和PM2.5在线监测数据,分析了挥发性有机物(VOCs)浓度水平特征和时序变化,并利用臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAFP)评估了VOCs的化学活性,通过潜在源贡献因子法(PSCF)和浓度权重轨迹分析(CWT)识别石家庄市春季VOCs潜在源区,通过特征比值法对VOCs进行来源解析.结果表明:①2019年、 2021年和2022年石家庄市春季(即观测期)污染期ρ(VOCs)均值为191.17 μg·m-3,清洁期ρ(VOCs)均值为122.18 μg·m-3. ②OFP在污染期为361.23 μg·m-3,在清洁期为266.96 μg·m-3;SOAFP在污染期为1.98 μg·m-3,在清洁期为1.61 μg·m-3,控制好苯系物,尤其是苯、甲苯、乙苯和二甲苯是减少PM2.5和O3污染的关键. ③观测期VOCs潜在源区主要分布在裕华区东部、高新区和栾城区北部,权重CWT分布与主要权重PSCF分布相统一,除本地排放外还受到临近区域传输的影响. ④由B/T/E及X/B的值,石家庄市春季VOCs的主要来源为移动源和燃烧源,且气团老化较严重,控制机动车排放、开展区域联防联控是改善石家庄市空气质量的有效手段.  相似文献   
3.
适用于淡水的BOD测定仪已经成型,海水盐度高,BOD浓度低,测定仪样品传输及测量的精度和微生物传感器菌种的耐盐性,给构建海水BOD自动测定仪带来困难.以溶解氧电极微生物传感器法为基础,依据海水BOD测定的技术特点,分析样品传输系统、恒温系统和信号采集与处理系统的技术要求,并筛选耗氧耐盐菌种作为微生物传感器的菌株,构建了海水BOD测定仪.用该测定仪测定海水标样,测定结果与标准稀释法测定的BOD5具有良好的相关性和准确度.  相似文献   
4.
伯胺N1923反应萃取含Cr~(6+)废水的研究   总被引:3,自引:0,他引:3  
考察了伯胺N 1 92 3 煤油从硫酸介质中对Cr6 + 的萃取 ,萃取属络合反应机理 ,有机相中主要生成伯胺N1 92 3∶Cr =2∶1的萃合物。探讨了初始水相酸度 ,萃取剂含量 ,温度等对萃取平衡分配系数的影响。对萃取反应中出现的“第三相”问题进行了研究 ,并提出了消除的方法。  相似文献   
5.
为系统研究石家庄市季节性典型污染物的重污染传输特征,基于2018年12月~2019年11月46个环境监测站(PM2.5、PM10、O3、NO2、SO2和CO)及17个气象站(温度、湿度和风速)的小时监测数据,利用插值(IDW)和相关方法,分析污染物的季节性时空特征;并结合GDAS数据,采用后向轨迹方法,研究污染物的季度传输格局和潜在源区.结果表明:①不同季节具有典型的污染物,季节性典型污染物和污染率依次为:春季(PM10,48.91%)、夏季(O3,81.97%)、秋季(PM10和PM2.5,47.54%和32.79%)和冬季(PM2.5,74.44%),其与气象条件变化有显著联系;②春季PM10与风速呈负相关,呈西北高、东南低的空间格局,主要传输方向为南向(53.32%),潜在源区(WPCWTij≥160 μg ·m-3)为河北(冀)中南、河南(豫)中北及山西(晋)中部,且山东(鲁)西和陕西(陕)西北部的传输也会贡献(WPSCFij≥0.3)市域的PM10浓度;③夏季O3与温度呈正相关,与湿度呈负相关,传输通道方向为东南-南向(54.24%),其潜在源区呈以石家庄市为中心,沧州和菏泽为两翼的新月形区域;④秋季和冬季PM2.5与湿度呈正相关,冬季呈西低、东高态势分布,输送方向为:秋季(东北-东南,74.75%),冬季(西北,55.47%),主要污染源区(WPCWTij≥180 μg ·m-3)集中在冀中南、豫北和晋中西部.  相似文献   
6.
贺博文  聂赛赛  王帅  冯亚平  姚波  崔建升 《环境科学》2021,42(11):5152-5161
为研究承德市PM2.5中碳质组分的季节变化及污染来源,于2019年1、4、7和10月采集大气PM2.5样品,测定碳质组分浓度.通过有机碳(OC)与元素碳(EC)比值、总碳质气溶胶(TCA)及二次有机碳(SOC)的估算,分析碳质组分的变化特征;结合后向轨迹和主成分分析(PCA)方法,分析污染来源.结果表明,采样期间PM2.5、OC和EC的平均质量浓度分别为(31.26±21.39)、(13.27±8.68)和(2.80±1.95)μg ·m-3.PM2.5的季节变化趋势为:冬季[(47.68±30.37)μg ·m-3]>秋季[(28.72±17.12)μg ·m-3]>春季[(26.59±15.32)μg ·m-3]>夏季[(23.17±8.38)μg ·m-3],与总碳(TC)、OC和EC季节变化趋势一致,冬季(R2=0.85)的OC与EC来源较一致;OC/EC值得出4个季节均受到交通和燃煤源排放的影响,且冬季受烟煤排放影响显著.TCA的平均浓度为(21.38±13.68)μg ·m-3,占PM2.5比例达68.39%,二次转化率(SOC/OC)为:春季(54.09%)>秋季(37.64%)>夏季(32.91%)>冬季(25.43%).后向轨迹模拟结果表明,春季和夏季气团携带的污染物浓度相对较低,秋季污染物的传输通道为西南方向,冬季为西北方向,主成分分析(PCA)表明,承德市PM2.5削减的关键是控制机动车尾气、燃煤和生物质燃烧源的排放.  相似文献   
7.
长寿命BOD微生物传感器的研究   总被引:10,自引:0,他引:10  
本研究将从淀粉厂活性污泥中分离筛选出的一种性能优良的腊状芽孢杆菌(Bacillus Cereus)用高分子等材料包埋制成薄膜,与氧电极组合成BOD传感器。经对其技术性能进行测试表明,间断使用寿命已达16个月以上;对BOD标准物质线性响应范围5—60mg/L;响应时间不大于8min;测定环境标样平均误差1%,变异系数5.1;与BOD_5经典法同步测定废水样品结果相关性良好。  相似文献   
8.
微生物絮凝剂处理含油废水   总被引:2,自引:0,他引:2  
对用一种用发酵法制备的生物絮凝剂的絮凝性能进行了研究。结果表明,试验所得生物絮凝剂具有较好的耐温性和较好的絮凝能力。对试验用乳浊液絮凝除油效率达95%以上,优于商品破乳剂E-3453的絮凝性能。将生物絮凝剂用于含油废水的处理,出水含油量小于5mg/L。  相似文献   
9.
利用超高效液相色谱串联质谱法(HPLC-MS)对白洋淀水体和沉积物中喹诺酮类(Quinolones,QNs)抗生素进行检测,并研究其生态风险空间分异特征,探究其与环境因子的相关性.结果表明:①白洋淀氧氟沙星(Ofloxacin,OFL)和氟甲喹(Flumequine,FLU)的检出率最高(100%),其次为马波沙星(Marbofloxacin,MAR)和氟罗沙星(Fleroxacin,FLE)(≥60%),其余QNs的检出率较低(≤35%);②白洋淀水体和沉积物中QNs抗生素浓度范围分别为153.39~1550.07 ng·L~(-1)和10.22~381.85 ng·g~(-1),水体中QNs在S1处浓度最高,S4处最低,沉积物中QNs在S2处浓度最高;③相关性分析结果表明,水体透明度(Secchi depth,SD)、总氮(Total nitrogen,TN)、总磷(Total phosphorus,TP)、硝氮(Nitrate nitrogen,NO~-_3-N)、沉积物氨氮(Ammonia nitrogen,NH_3-Ns)和沉积物总氮(TNs)与QNs相关性显著,其中,SD、TP和NH_3-Ns与部分QNs(MAR、恩诺沙星(Enrofloxacin,ENR)和FLE)显著相关(p0.01),表明生活污水和养殖废水对QNs的贡献较大;④生态风险评价结果表明,白洋淀QNs总体处于中低风险水平,其中,ENR处于中高风险水平,其余QNs处于低风险水平;就空间分布而言,除S1和S9为高风险区外,其余各点为中低风险区.  相似文献   
10.
由于喹诺酮类(QNs)药物在人类医学中的重要性,世界卫生组织将其列为“最重要的抗菌药物”.鉴于此,为阐明土壤中喹诺酮类抗生素时空分布特征及其风险,分别于2020年9月(秋季)和2021年6月(夏季)采集了18份表层土壤样品,并采用高效液相色谱串联质谱法(HPLC-MS/MS)分析测定了土壤样品中的QNs抗生素含量,明晰了QNs时空分布特征及其环境影响因子;并采用风险商值法(RQ)进行了QNs生态风险和抗性风险评估.结果表明:(1)由2020年9月(秋季)至2021年6月(夏季), QNs含量平均值呈现下降趋势[秋季和夏季ω(QNs)平均值分别为94.88μg·kg-1和44.46μg·kg-1];中部(S9~S15)土壤中QNs含量最高而其他区域较低;(2)土壤中粉粒平均占比并无显著变化,而黏粒和砂粒平均占比分别呈升高和下降趋势;总磷(TP)、氨氮(NH+4-N)和硝氮(NO-3-N)含量平均值呈下降趋势;(3)相关分析结果表明,QNs含量与土壤粒径、亚硝...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号