首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
废物处理   2篇
环保管理   1篇
综合类   5篇
基础理论   3篇
污染及防治   2篇
评价与监测   11篇
社会与环境   1篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2014年   7篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2000年   1篇
  1998年   1篇
  1967年   1篇
  1963年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Multiple-species reserves aim at supporting viable populations of selected species. Population viability analysis (PVA) is a group of methods for predicting such measures as extinction risk based on species-specific data. These methods include models that simulate the dynamics of a population or a metapopulation. A PVA model for the California gnatcatcher in Orange County was developed with landscape (GIS) data on the habitat characteristics and requirements and demographic data on population dynamics of the species. The potential applications of this model include sensitivity analysis that provides guidance for planning fieldwork, designing reserves, evaluating management options, and assessing human impact. The method can be extended to multiple species by combining habitat suitability maps for selected species with weights based on the threat faced by each species, and the contribution of habitat patches to the persistence of each species. These applications and extensions, together with the ability of the model to combine habitat and demographic data, make PVA a powerful tool for the design, conservation, and management of multiple species reserves.  相似文献   
2.
Environmental Science and Pollution Research - In the pursuit of constructing a sustainable world for all through the instrumental seventeen Sustainable Development Goals, the COVID-19 pandemic...  相似文献   
3.
Opencast mining of uranium may lead to natural erosion of ore material due to overland flow of water accumulated from rainfall. The overland flow may ultimately reach the nearby surface water body. This process may lead to the release of 238U and its daughter products into the surface water body. A model is developed to assess the radiological impact of the erosion in terms of dose through drinking water pathway due to 238U and its progeny in the surface water body. The in-growth of progeny is taken into account using Bateman equations. The study brings out the importance of incorporating decay chain transport in the radiological impact assessment studies. It is also observed that 210Po, 210Pb, 226Ra, and 230Th together contribute to about 95.5 % of the total dose. The model is then extended to incorporate the uncertainty associated with the dose due to consumption of the reservoir water by employing Wilk’s Method. Such a model can be very useful in establishing regulations related to dose through drinking water pathway around an opencast mine. Wilk’s method is computationally less expensive as compared to the exact methods like Monte Carlo method. Wilk’s method is used to calculate a value greater than α percentile value for the dose to the public due to 238U and its progeny in the reservoir through drinking water pathway with confidence level β (α/β value). When applied to a hypothetical case using some literature data on surface water bodies, it is found that with increase in the value of α or β, the α/β value in general, shows an increasing trend as expected. Depending upon the nature of the problem under study, one can calculate an α/β value i.e. 95/95 value, 99/95 value etc., and that value can be helpful in establishing the regulatory limiting value. Also, the α/β value can be used to check whether dose due to a particular radioactive release is within the specified limits.  相似文献   
4.
Inverse modeling technique based on nonlinear least square regression method (LSRM) is developed for the identification of aquatic source and transport parameters. Instantaneous line source release model in two-dimensional domain and continuous point source release model in three-dimensional domain are used for the purpose. Case studies have been carried out for both types of releases to illustrate their application. Error analysis has been carried out to identify the maximum error that can be tolerated in the input concentration data used in the inverse model and to specify the minimum number of sampling points to generate such input data. The LSRM is compared with the well-established correlation coefficient optimization method for instantaneous line source release model, and good comparison is observed between them. The LSRM is used to quantitatively estimate the releases of different radionuclides into the Pacific Ocean which has resulted due to the discharge of highly radioactive liquid effluent from the affected Daiichi Nuclear Power Station at Fukushima in Japan. The measured concentrations of these radionuclides in seawater samples collected from two sampling points near Fukushima are used for the estimation. The average release works out to be 1.09?×?1016 for 131I, 3.4?×?1015 Bq for 134Cs, and 3.57?×?1015 Bq for 137Cs. Very good agreement is observed between the releases estimated in this study and those estimated by other different agencies.  相似文献   
5.
6.
Anthropogenic climate change is a key threat to global biodiversity. To inform strategic actions aimed at conserving biodiversity as climate changes, conservation planners need early warning of the risks faced by different species. The IUCN Red List criteria for threatened species are widely acknowledged as useful risk assessment tools for informing conservation under constraints imposed by limited data. However, doubts have been expressed about the ability of the criteria to detect risks imposed by potentially slow‐acting threats such as climate change, particularly because criteria addressing rates of population decline are assessed over time scales as short as 10 years. We used spatially explicit stochastic population models and dynamic species distribution models projected to future climates to determine how long before extinction a species would become eligible for listing as threatened based on the IUCN Red List criteria. We focused on a short‐lived frog species (Assa darlingtoni) chosen specifically to represent potential weaknesses in the criteria to allow detailed consideration of the analytical issues and to develop an approach for wider application. The criteria were more sensitive to climate change than previously anticipated; lead times between initial listing in a threatened category and predicted extinction varied from 40 to 80 years, depending on data availability. We attributed this sensitivity primarily to the ensemble properties of the criteria that assess contrasting symptoms of extinction risk. Nevertheless, we recommend the robustness of the criteria warrants further investigation across species with contrasting life histories and patterns of decline. The adequacy of these lead times for early warning depends on practicalities of environmental policy and management, bureaucratic or political inertia, and the anticipated species response times to management actions. Detección del Riesgo de Extinción a partir del Cambio Climático por medio del Criterio de la Lista Roja de la UICNKeith et al.  相似文献   
7.
Environment, Development and Sustainability - Arsenic (As) in groundwater has become a worldwide concern due to its high toxicity as it is classified as a potent carcinogen, when exposed to...  相似文献   
8.
Global positioning systems (GPS) are increasingly being used for habitat mapping because they provide spatially referenced data that can be used to characterize habitat structure across the landscape and document habitat change over time. We evaluated the accuracy of using a GPS for determining the size and location of habitat patches in a riverine environment. We simulated error attributable to a mapping-grade GPS receiver capable of achieving sub-meter accuracy onto discrete macrophyte bed and wood habitat patches (2 to 177 m(2)) that were digitized from an aerial photograph of the Laramie River, Wyoming, USA in a way that emulated field mapping. Patches with simulated error were compared to the original digitized patches. The accuracy in measuring habitat patches was affected most by patch size and less by patch shape and complexity. Perimeter length was consistently overestimated but was less biased for large, elongate patches with complex shapes. Patch area was slightly overestimated for small patches but was unbiased for large patches. Precision of area estimates was highest for large (>100 m(2)), elongate patches. Percent spatial overlap, a measure of the spatial accuracy of patch location, was low and variable for the smallest patches (2 to 5 m(2)). Mean percent spatial overlap was not related to patch shape but the precision of overlap was lower for small, elongate, and complex patches. Mapping habitat patches with a mapping-grade GPS can yield useful data, but research objectives will determine the acceptable amount of error and the smallest habitats that can be reliably measured.  相似文献   
9.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号