首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
评价与监测   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Odorous air samples collected from several sources were presented to an olfactometer, an electronic nose, a hydrogen sulfide (H(2)S) detector and an ammonia (NH(3)) detector. The olfactometry measurements were used as the expected values while measurements from the other instrumentation values became input variables. Five hypotheses were established to relate the input variables and the expected values. Both linear regression and artificial neural network analyses were used to test the hypotheses. Principal component analysis was utilized to reduce the dimensionality of the electronic nose measurements from 33 to 3 without significant loss of information. The electronic nose or the H(2)S detector can individually predict odor concentration measurements with similar accuracy (R (2) = 0.46 and 0.50, respectively). Although the NH(3) detector alone has a very poor relationship with odor concentration measurements, combining the H(2)S and NH(3) detectors can predict odor concentrations more accurately (R (2) = 0.58) than either individual instrument. Data from the integration of the electronic nose, H(2)S, and NH(3) detectors produce the best prediction of odor concentrations (R (2) = 0.75). With this accuracy, odor concentration measurements can be confidently represented by integrating an electronic nose, and H(2)S and NH(3) detectors.  相似文献   
2.
When livestock manure slurry is agitated, the sudden release of hydrogen sulfide (H(2)S) can raise concentrations to dangerous levels. Low-level air bubbling and dietary S reduction were evaluated as methods for reducing peak H(2)S emissions from swine (Sus scrofa) manure slurry samples. In a first experiment, 15-L slurry samples were stored in bench-scale digesters and continuously bubbled with air at 0 (control), 5, or 10 mL min(-1) for 28 d. The 5-L headspace of each digester was also continuously ventilated at 40 mL min(-1) and the mean H(2)S concentration in the outlet air was <10 microL L(-1). On Day 28, the slurry was agitated suddenly. The peak H(2)S concentration exceeded instrument range (>120 microL L(-1)) from the control treatment, and was 47 and 3.4 microL L(-1) for the 5 and 10 mL min(-1) treatments, respectively. In a second experiment, individually penned barrows were fed rations with dietary S concentrations of 0.34, 0.24, and 0.15% (w/w). Slurry derived from each diet was bubbled with air in bench-scale digesters, as before, at 10 mL min(-1) for 12 d and the mean H(2)S concentration in the digester outlet air was 11 microL L(-1). On Day 12, the slurry was agitated but the H(2)S emissions did not change significantly. Both low-level bubbling of air through slurry and dietary S reduction appear to be viable methods for reducing peak H(2)S emissions from swine manure slurry at a bench scale, but these approaches must be validated at larger scales.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号