首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
基础理论   1篇
污染及防治   7篇
评价与监测   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2000年   1篇
  1983年   1篇
排序方式: 共有11条查询结果,搜索用时 16 毫秒
1.
Aspergillus is a genus of mold that has strong indoor sources, including several species capable of acting as opportunistic pathogens. Previous studies suggest that Aspergillus could serve as an indicator for abnormal mold growth or moisture, making it an important genus for environmental monitoring. Here, a quantitative polymerase chain reaction (qPCR, or real-time PCR) assay is presented for Aspergillus. The assay shows good specificity for the genus, detecting all Aspergillus species tested, although a few non-Aspergillus species are also amplified. Sensitivity testing demonstrates that DNA representing one conidium can be detected. A validation study compared qPCR results against direct microscopy counts using A. fumigatus conidia aerosolized into a laboratory chamber. The assay was then used to quantify Aspergillus in indoor air samples, demonstrating its utility for environmental monitoring. Analysis of a small number of clinical sputum samples showed complete agreement with culturing results.  相似文献   
2.
The effect of foot traffic on indoor particle resuspension was evaluated by associating non-prescribed foot traffic with simultaneous size-resolved airborne particulate matter (PM) concentrations in a northern California hospital. Foot traffic and PM were measured every 15 min in a carpeted hallway over two 27-h periods. The PM concentration in the hallway was modeled based on the foot traffic intensity, including the previous PM concentration via an autocorrelation regression method based on the well-mixed box model. All 5 size ranges of PM, ranging from 0.75–1 μm to 5–7.5 μm, were highly correlated with foot traffic measurements for both monitoring periods (p < 0.001, R2 = 0.87–0.90). However, correlations during daytime hours were less significant than nighttime. Coefficients found via this autoregressive analysis can be interpreted to reveal (i) time-independent contributions of walking activities on PM levels for a specific location; and (ii) size-specific characteristics of the resuspended PM.  相似文献   
3.
As indoor smoking bans have become widely adopted, some U.S. communities are considering restricting smoking outdoors, creating a need for measurements of air pollution near smokers outdoors. Personal exposure experiments were conducted with four to five participants at six sidewalk bus stops located 1.5–3.3 m from the curb of two heavily traveled California arterial highways with 3300–5100 vehicles per hour. At each bus stop, a smoker in the group smoked a cigarette. Gravimetrically calibrated continuous monitors were used to measure fine particle concentrations (aerodynamic diameter ≤2.5 µm; PM2.5) in the breathing zones (within 0.2 m from the nose and mouth) of each participant. At each bus stop, ultrafine particles (UFP), wind speed, temperature, relative humidity, and traffic counts were also measured. For 13 cigarette experiments, the mean PM2.5 personal exposure of the nonsmoker seated 0.5 m from the smoker during a 5-min cigarette ranged from 15 to 153 µg/m3. Of four persons seated on the bench, the smoker received the highest PM2.5 breathing-zone exposure of 192 µg/m3. There was a strong proximity effect: nonsmokers at distances 0.5, 1.0, and 1.5 m from the smoker received mean PM2.5 personal exposures of 59, 40, and 28 µg/m3, respectively, compared with a background level of 1.7 µg/m3. Like the PM2.5 concentrations, UFP concentrations measured 0.5 m from the smoker increased abruptly when a cigarette started and decreased when the cigarette ended, averaging 44,500 particles/cm3 compared with the background level of 7200 particles/cm3. During nonsmoking periods, the UFP background concentrations showed occasional peaks due to traffic, whereas PM2.5 background concentrations were extremely low. The results indicate that a single cigarette smoked outdoors at a bus stop can cause PM2.5 and UFP concentrations near the smoker that are 16–35 and 6.2 times, respectively, higher than the background concentrations due to cars and trucks on an adjacent arterial highway.

Implications: Rules banning smoking indoors have been widely adopted in the United States and in many countries. Some communities are considering smoking bans that would apply to outdoor locations. Although many measurements are available of pollutant concentrations from secondhand smoke at indoor locations, few measurements are available of exposure to secondhand smoke outdoors. This study provides new data on exposure to fine and ultrafine particles from secondhand smoke near a smoker outdoors. The levels are compared with the exposure measured next to a highway. The findings are important for policies that might be developed for reducing exposure to secondhand smoke outdoors.  相似文献   

4.
Personal exposure to air pollutants can be substantially higher in close proximity to an active source due to non-instantaneous mixing of emissions. The research presented in this paper quantifies this proximity effect for a non-buoyant source in 2 naturally ventilated homes in Northern California (CA), assessing its spatial and temporal variation and the influence of factors such as ventilation rate on its magnitude. To quantify how proximity to residential sources of indoor air pollutants affects human exposure, we performed 16 separate monitoring experiments in the living rooms of two detached single-family homes. CO (as a tracer gas) was released from a point source in the center of the room at a controlled emission rate for 5-12 h per experiment, while an array of 30-37 real-time monitors simultaneously measured CO concentrations with 15 s time resolution at radial distances ranging from 0.25-5 m under a range of ventilation conditions. Concentrations measured in close proximity (within 1 m) to the source were highly variable, with 5 min averages that typically varied by >100-fold. This variability was due to short-duration (<1 min) pollutant concentration peaks ("microplumes") that were frequently recorded in close proximity to the source. We decomposed the random microplume component from the total concentrations by subtracting predicted concentrations that assumed uniform, instantaneous mixing within the room and found that these microplumes can be modeled using a 3-parameter lognormal distribution. Average concentrations measured within 0.25 m of the source were 6-20 times as high as the predicted well-mixed concentrations.  相似文献   
5.
Residential interior door positions influence the pollutant concentrations that result from short-term indoor sources, such as cigarettes, candles, and incense. To elucidate this influence, we reviewed past studies and conducted new experiments in three residences: a single-story 714 m3 ranch-style house, a 510 m3 two-story split-level house, and a 200 m3 two-story house. During the experiments, we released sulfur hexafluoride or carbon monoxide tracer gas over short periods (≤30 min) and measured concentrations in the source room and at least one other (receptor) room for various interior door opening positions. We found that closing a door between rooms effectively prevented transport of air pollutants, reducing the average concentration in the receptor room relative to the source room by 57–100% over exposure periods of 1–8 h. When intervening doors were partially or fully open, the reduction in average concentrations ranged from 3% to 99%, varying as a function of door opening width and the distance between source and receptor rooms.  相似文献   
6.
There are profound differences in the ways that the sponge Callyspongia diffusa reacts to self versus non-self tissue contact. Syngeneic or isogeneic contacts result in rapid tissue fusion and persistent maintenance of normal sponge structure. However, allogeneic contacts result in immune-type rejection reactions leading to tissue death at the interface. Using grafted sponge tissues, both types of response were subject to fine-structural analysis by scanning electron microscopy. Isografts showed no overt cellular reactions other than compatible fusion, whereas sponge tissues at allograft interfaces showed incompatibility reactions. The major steps in the histopathologic sequence of events in allograft reactions may be summarized as follows: (1) immediate allorecognition occurs accompanied by microscopic cellular rearrangements; (2) macroscopic tissue bridges form across the graft interface; (3) massive cellular infiltration towards graft sites, with cells often passing into a graft partner through the tissue bridges; (4) cellular hyperplasia and then cell death occurs at the interface; and (5) sloughing of dead tissue leaves areas of vacant skeleton between the two grafted individuals. Allograft rejection reactions in sponges have many of the hallmarks of histoincompatibility reactions in higher animals. Although there could be different alloimmune mechanisms operating in different animals, the salient events of allorecognition and antagonistic rejection appear strikingly similar among diverse multicellular animals.  相似文献   
7.
ABSTRACT

We summarize the results from the various measurements and the inter-sampler comparisons from Southeastern Aerosol and Visibility Study (SEAVS), a study with one of its objectives to test for closure among chemical, gravimetric and optical measurements of atmospheric aerosol particles. Sulfate and organics are the dominant components of the SEAVS fine particles (nominally, particles with aerodynamic diameter <2.5 u,m) but between 28 and 42% (range over various samplers) of the gravimetrically measured total fine particle concentration is unidentified by the chemical measurements. Estimates of water associated with inorganic components and measurement imprecision do not totally explain the observed difference between gravimetric and chemical measurements. We examine the theoretical and empirical basis for assumptions commonly made in the published literature to extrapolate total fine particle concentration on the basis of chemical measurements of ions, carbon and elements.  相似文献   
8.
The amount of light scattered by airborne particles inside an aerosol photometer will vary not only with the mass concentration, but also with particle properties such as size, shape, and composition. This study conducted controlled experiments to compare the measurements of a real-time photometer, the SidePak AM510 monitor (SidePak), with gravimetric mass. PM sources tested were outdoor aerosols, and four indoor combustion sources: cigarettes, incense, wood chips, and toasting bread. The calibration factor for rescaling the SidePak measurements to agree with gravimetric mass was similar for the cigarette and incense sources, but different for burning wood chips and toasting bread. The calibration factors for ambient urban aerosols differed substantially from day to day, due to variations in the sources and composition of outdoor PM. A field evaluation inside a casino with active smokers yielded calibration factors consistent with those obtained in the controlled experiments with cigarette smoke.  相似文献   
9.
Surface tensions for a wide variety of pure organic and mixed organic/salt solutions were measured at 25 and 5 °C using the Wilhelmy plate method. Langmuir adsorption parameters for the organic compounds were extracted by fitting the surface tension data to the Szyszkowski equation. In a mixed organic/salt solution, the surface tension was primarily controlled by the organic component, even when the mass ratio of salt to organic in solution exceeded threefold. Excellent agreement was found between measured surface tension values at 5 °C and those predicted by the Szyszkowski equation using Langmuir adsorption parameters extracted at 25 °C. This finding may have important implications for cloud formation studies where the onset of activation often occurs at temperatures below 25 °C.  相似文献   
10.
We summarize the results from the various measurements and the inter-sampler comparisons from Southeastern Aerosol and Visibility Study (SEAVS), a study with one of its objectives to test for closure among chemical, gravimetric and optical measurements of atmospheric aerosol particles. Sulfate and organics are the dominant components of the SEAVS fine particles (nominally, particles with aerodynamic diameter < or = 2.5 microns) but between 28 and 42% (range over various samplers) of the gravimetrically measured total fine particle concentration is unidentified by the chemical measurements. Estimates of water associated with inorganic components and measurement imprecision do not totally explain the observed difference between gravimetric and chemical measurements. We examine the theoretical and empirical basis for assumptions commonly made in the published literature to extrapolate total fine particle concentration on the basis of chemical measurements of ions, carbon and elements. We then explore the more general question of closure using the SEAVS data as well as data from other, similar studies reported in the literature. In so combining the SEAVS measurements with other similar studies, we find a strong association between organic carbon and the unidentified component, that is, the fraction of the total fine particle concentration not identified by chemical measurements. We offer several tenable hypotheses for the relationship between the organic and unidentified components that deserve to be tested in future work. Specifically, we hypothesize that (1) errors in the sampling and analysis of organic carbon; (2) estimates of organic mass from measurements of organic carbon; and/or (3) water absorption by organics may all contribute to the observed relationship.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号