首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
污染及防治   1篇
评价与监测   4篇
  2009年   1篇
  2005年   1篇
  2002年   2篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Seventeen fog events were sampled in Baton Rouge, Louisiana during 2002–2004 as part of characterizing wet deposition by fogwater in the heavily industrialized corridor along the Louisiana Gulf Coast in the United States. These samples were analyzed for chemical characteristics such as pH, conductivity, total organic and inorganic carbon, total metals and the principal ion concentrations. The dominant ionic species in all samples were NH4+, NO3, Cl and SO42−. The pH of the fogwater sampled had a mean value of 6.7 with two cases of acidic pH of 4.7. Rainwater and fogwater pH were similar in this region. The acidity of fogwater was a result of NO3 but partly offset by high NH4+. The measured gaseous SO2 accounted for a small percentage of the observed sulfate concentration, indicating additional gas-to-particle conversion of SO2 to sulfate in fogwater. The gaseous NOx accounted for most of the dissolved nitrate and nitrite concentration in fogwater. The high chloride concentration was attributable to the degradation of chlorinated organics in the atmosphere. The metal composition was traced directly to soil-derived aerosol precursors in the air. The major metals observed in fogwater were Na, K, Ca, Fe, Al, Mg and Zn. Of these Na, K, Ca and Mg were predominant with mean concentrations > 100 μM. Al, Fe and Zn were present in the samples, at mean concentrations < 100 μM. Small concentrations of Mn (7.8 μM), Cu (2 μM), Pb (0.07 μM) and As (0.32 μM) were also observed in the fogwaters, and these were shown to result from particulates (PM2.5) in the atmosphere. The contribution to both ions and metals from the marine sources in the Louisiana Gulf Coast was minimal. The concentrations of all principal ionic species and metals in fogwater were 1–2 orders of magnitude larger than in rainwater. Several linear alkane organic compounds were observed in the fogwater, representing the contributions from petroleum products at concentrations far exceeding their aqueous solubility. A pesticide (atrazine) was also observed in fogwater, representing the contribution from the agricultural activities nearby.  相似文献   
2.
The adsorption and desorption of three volatile organic compounds (1,2- dichloroethane, 1,1,2- trichloroethane and 1,1,2,2-tetrachloroethane) from a previously uncontaminated clayey soil sample from a Superfund site in North Baton Rouge,Louisiana was studied. In the linear range of the adsorption isotherm, the partition constants were not affected by the presence of the co-solutes. The adsorption isotherms over a wide concentration range on the soil followed the nonlinearFreundlich isotherm. The desorption of the compounds showedsignificant hysteresis at all concentrations studied. Approximately 20 to 70% of the adsorbed mass of organic compounds resisted the desorption even after five months ofsuccessive desorption steps. The desorption of four compounds(1,2-dichloroethane, 1,1,2-trichloroethane, 1,4-dichlorobenzeneand hexachlorobutadiene) from a contaminated soil sample fromthe same site was also studied. The aqueous concentration declined as the successive desorption steps progressed. For hexachlorobutediene the desorption can be visualized as occurring in two stages. The first stage involved a loosely bound or reversible fraction and the second stage involveda tightly bound or resistant fraction.  相似文献   
3.
Fogwater and air samples were collected in Baton Rouge between November 2004–February 2005 and during February 2006 at Houston. Organic compounds present in the fog samples were detected, quantified and then grouped into different compound classes based on molecular size, solubility and polarity using gas chromatography/mass spectrometry, high performance liquid chromatography with diode array detection and ion chromatography. Organic compounds were grouped as n-alkanes, aromatics and polycyclic aromatics, carbonyls, alcohols, amides and esters. Organic compounds in fog and air samples in Houston indicated clear urban/industrial anthropogenic origin, while compounds detected in Baton Rouge fog and air samples showed a mix of both agricultural and urban/industrial anthropogenic inputs. Among the various polycyclic aromatic compounds detected, the total concentration of naphthalene and its derivatives was 2.8 μg m?3 in Houston and 0.08 μg m?3 in Baton Rouge air. Analysis of concentrations of organic compounds pre- and post- fog revealed that compounds with low vapor pressure had higher scavenging efficiency in fog sampled at the two locations. Concentrations of organic compounds in fog samples were higher than those predicted by conventional air-water Henry's law equilibrium. Observed higher concentrations in the aqueous phase were modeled accounting for surface adsorption and accumulation of gas phase species and the presence of humic-like substances in fogwater.  相似文献   
4.
The rates of desorption of trichloroethylene (TCE) and 1,3-dichlorobenzene (DCB) from a silty soil at a Superfund site and a silty-clayey soil from an uncontaminated bottomland hardwoodswamp in Baton Rouge, Louisiana were studied in laboratory batchsystems. The effect of the age of soil contamination was studiedusing a laboratory-spiked soil incubated for 3 days, 3 months and5 months. An empirical non-linear model was used to describe thebi-phasic nature of desorption with one fraction (labile) beingreleased in relatively short periods of time (typically 24–100 hr) and a second fraction (non-labile or irreversible) beingresistant to desorption. The non-linear model parameters, viz.,the fraction of the chemical released rapidly (F), and the firstorder desorption rate coefficients, k 1 and k 2respectively for the labile and slowly released fractions weredetermined by fitting the experimental data to the model. Thedata fit the model well as indicated by the high r 2 values.The estimate of k 1 was good. However, the values of k 2are known with less precision due to the limited duration of theexperiment and number of samples taken at long times. In addition, desorption kinetics of 3 and 5-month old contaminatedsoils showed that progressively less amount of contaminant was available for facile desorption (lower F) compared to freshly contaminated soil. The labile fraction had desorption rate constants of the order of 10-1 h-1, whereas the slowlyreleased fraction had rate constants of the order of 10-4 h-1 in accord with literature reported values for a varietyof other compounds and soils. Possible mechanisms describing these rates and implications for the site clean up are discussed.  相似文献   
5.
The adsorption of four volatile organic compounds (1,4-dichloro-benzene, 1,2-dichloroethane, 1,2,2-trichloroethane and 1,1,2,2,-tetrachloroethane) on three soil types from a Superfund site (Petroprocessors Inc) in Baton Rouge, LA was studied with the purpose of obtaining an overall correlation for inclusion in a groundwater transport model being developed for site remediation. The soil-water partition constant, Kd was determined using a standard ASTM procedure (E–1195–87). Using the data for different soil types (fraction organic carbon between 0.11% and 1.13%) and different mineral surface areas (7 to 45 m2/g), the organic carbon contribution (Koc) and the mineral matter contribution (Kmin) to the partition constant were determined. The soils obtained were either from the Pleistocene period or recent shallow deposits at the site. Both log Koc and log Kmin were linearly correlated to log Kow, the octanol-water partition constant. This data provided the basis for obtaining a general correlation for Kd on different soil types at the site. The predicted values were in agreement with that for a composite soil from the same site. The desorption of compounds from the high clay soil after the 24 hour adsorption period was observed to show a biphasic behavior, namely, an easily desorbed fraction and a desorption resistant fraction. The easily desorbed fraction was found to be satisfactorily predicted using the conventional Kd as obtained from the adsorption experiment. The slowly desorbing fraction had a time constant of several weeks. The concentration in the desorption resistant compartment was found to be dependant on the initial amount of contaminant available for adsorption. The aqueous phase concentration in equilibrium with the desorption resistant fraction was found to be 8 g/L for dichlorobenzene and 12 g/L for dichloroethane.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号