首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
环保管理   4篇
污染及防治   1篇
评价与监测   5篇
  2007年   1篇
  2000年   2篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
This paper gives step-by-step instructions for assessing aquatic selenium hazards associated with mining. The procedure was developed to provide the U.S. Forest Service with a proactive capability for determining the risk of selenium pollution when it reviews mine permit applications in accordance with the National Environmental Policy Act (NEPA). The procedural framework is constructed in a decision-tree format in order to guide users through the various steps, provide a logical sequence for completing individual tasks, and identify key decision points. There are five major components designed to gather information on operational parameters of the proposed mine as well as key aspects of the physical, chemical, and biological environment surrounding it — geological assessment, mine operation assessment, hydrological assessment, biological assessment, and hazard assessment. Validation tests conducted at three mines where selenium pollution has occurred confirmed that the procedure will accurately predict ecological risks. In each case, it correctly identified and quantified selenium hazard, and indicated the steps needed to reduce this hazard to an acceptable level. By utilizing the procedure, NEPA workers can be confident in their ability to understand the risk of aquatic selenium pollution and take appropriate action. Although the procedure was developed for the Forest Service it should also be useful to other federal land management agencies that conduct NEPA assessments, as well as regulatory agencies responsible for issuing coal mining permits under the authority of the Surface Mining Control and Reclamation Act (SMCRA) and associated Section 401 water quality certification under the Clean Water Act. Mining companies will also benefit from the application of this procedure because priority selenium sources can be identified in relation to specific mine operating parameters. The procedure will reveal the point(s) at which there is a need to modify operating conditions to meet environmental quality goals. By recognizing concerns early in the NEPA process, it may be possible for a mining company to match operational parameters with environmental requirements, thereby increasing the likelihood that the permit application will be approved.  相似文献   
2.
It is now possible to formulate diagnostic selenium concentrations in four distinct ecosystem-level components; water, food-chain, predatory fish (consuming fish or invertebrate prey), and aquatic birds. Waterborne selenium concentrations of 2 µg/l or greater (parts per billion; total recoverable basis in 0.45 filtered samples) should be considered hazardous to the health and long-term survival of fish and wildlife populations due to the high potential for food-chain bioaccumulation, dietary toxicity, and reproductive effects. In some cases, ultra-trace amounts of dissolved and particulate organic selenium may lead to bioaccumulation and toxicity even when total waterborne concentrations are less than 1 µg/l.Food-chain organisms such as zooplankton, benthic invertebrates, and certain forage fishes can accumulate up to 30 µg/g dry weight selenium (some taxa up to 370 µg/g) with no apparent effect on survival or reproduction. However, the dietary toxicity threshold for fish and wildlife is only 3 µg/g; these food organisms would supply a toxic dose of selenium while being unaffected themselves. Because of this, food-chain organisms containing 3 µg/g (parts per million) dry weight or more should be viewed as potentially lethal to fish and aquatic birds that consume them.Biological effects thresholds (dry weight) for the health and reproductive success of freshwater and anadromous fish are: whole body=4 µg/g; skeletal muscle=8 µg/g; liver=12 µg/g; ovaries and eggs=10 µg/g. Effects thresholds for aquatic birds are: liver=10 µg/g; eggs=3 µg/g. The most precise way to evaluate potential reproductive impacts to adult fish and aquatic bird populations is to measure selenium concentrations in gravid ovaries and eggs. This single measure integrates waterborne and dietary exposure, and allows an evaluation based on the most sensitive biological endpoint. Resource managers and aquatic biologists should obtain measurements of selenium concentrations present in water, food-chain organisms, and fish and wildlife tissues in order to formulate a comprehensive and conclusive assessment of the overall selenium status and health of aquatic ecosystems.  相似文献   
3.
A procedure is given for evaluating the toxic threat of selenium to fish and wildlife. Toxic threat is expressed as hazard, and is based on the potential for food-chain bioaccumulation and reproductive impairment in fish and aquatic birds, which are the most sensitive biological responses for estimating ecosystem-level impacts of selenium contamination. Five degrees of hazard are possible depending on the expected environmental concentrations of selenium, exposure of fish and aquatic birds to toxic concentrations, and resultant potential for reproductive impairment. The degree of hazard is given a numerical score: 5 = high hazard, 4 = moderate hazard, 3 = low hazard, 2 = minimal hazard, and 1 = no identifiable hazard. A separate hazard score is given to each of five ecosystem components; water, sediments, benthic macroinvertebrates, fish eggs, and aquatic bird eggs. A final hazard characterization is determined by adding individual scores and comparing the total to the following evaluation criteria: 5 = no hazard, 6–8 = minimal hazard, 9–11 = low hazard, 12–15 = moderate hazard, 16–25 = high hazard. An example is given to illustrate how the procedure is applied to selenium data from a typical contaminant monitoring program.  相似文献   
4.
Five single-treatment methods used to stabilize seeded areas at urban and highway construction sites (asphalt-tacked straw, jute netting, mulch blanket, wood chips, excelsior blanket) were tested for their ability to control erosion of red clay soils by comparisons with exposed sites and multiple treatments. Sediment in runoff from experimental plots was characterized during low and high intensity precipitation from natural rainfall episodes during April, May, and June. Reductions in the total sediment concentration of runoff ranged from 28 percent (asphalt-tacked straw, 50 percent slope) to 90 percent (multiple treatments, 40 percent slope), with 85 percent of the eroded material composed of particles <0.04 mm in diameter. Larger size fractions were effectively reduced by all treatments tested regardless of slope (70 percent decrease). Established grass cover exceeded 90 percent on all plots after 60 days, but sediment release remained similar, attributable to high intensity rainfall, poor establishment of root systems, and piping on plots treated with tacked straw or jute netting. Results indicate that current stabilization methods shift sediment compostion toward a smaller particle size, causing single treatments to be minimally effective for controlling erosion of the major component of red clay soils. Because small particles have the greatest direct effect on aquatic biota, certain impacts of sedimentation may not be measurably lessened by single treatments in regions where red clays predominate even though the total sediment load is reduced by as much as 75 percent. Clearly, a multiple-treatment approach offers significantly greater control of erosion on red clay soils, however, current economic and construction policy represents a substantial deterrent to implementation.  相似文献   
5.
This paper presents some guidelines for risk assessment inwetlands. Ecosystem analysis, i.e., understanding how wetlandsfunction on the landscape, should be at the heart of theprocess. Another key point is to identify human values thatderive from these wetland functions. Knowing the relationshipbetween functions and values will greatly improve the problemidentification phase and aid in the selection of appropriatetest methods and evaluation endpoints. The result will be moreaccurate risk identification and more effective riskmanagement. Risk characterization in wetlands should involve atwo-step process: (1) utilize a wholistic, ecosystem approachto develop a detailed understanding of how the systemfunctions, and (2) overlay this knowledge base with threetiers of testing, as appropriate; exposure assessment,biological assessment, and ecological assessment. Although thismethodology may seem too complex for routine application,integrating ecosystem analysis may actually reduce the overalltime and cost by identifying key biological, chemical, andphysical parameters that must be evaluated early on in theassessment process.  相似文献   
6.
/ This paper presents a foundation for improving the risk assessmentprocess for freshwater wetlands. Integrating wetland science, i.e., use of anecosystem-based approach, is the key concept. Each biotic and abiotic wetlandcomponent should be identified and its contribution to ecosystem functionsand societal values determined when deciding whether a stressor poses anunreasonable risk to the sustainability of a particular wetland.Understanding the major external and internal factors that regulate theoperational conditions of wetlands is critical to risk characterization.Determining the linkages between these factors, and how they influence theway stressors affect wetlands, is the basis for an ecosystem approach.Adequate consideration of wetland ecology, hydrology, geomorphology, andsoils can greatly reduce the level of uncertainty associated with riskassessment and lead to more effective risk management. In order to formulateeffective solutions, wetland problems must be considered at watershed,landscape, and ecosystem scales. Application of an ecosystem approach can begreatly facilitated if wetland scientists and risk assessors work together todevelop a common understanding of the principles of both disciplines.KEY WORDS: Ecological risk assessment; Freshwater wetlands;Environmental pollution; Chemical stressors; Physical stressors; Biologicalstressors  相似文献   
7.
Winter Stress Syndrome (WSS) is a condition of severe lipid depletion in fish brought on by external stressors in combination with normal reductions in feeding and activity during cold weather. Fish can develop this syndrome in response to chemical stressors such as water pollutants, or biological stressors such as parasites. Substantial mortality can result, potentially changing year-class strength and population structure of the affected species, and altering community-level ecological interactions. Aquatic contaminants should be evaluated in the context of seasonal metabolic changes that normally occur in test organisms. WSS could be an important, but as yet unquantified, cause of mortality in many circumstances. Wastewater discharges may pose a greater toxic threat to fish during winter than at other times of the year. A comprehensive protocol for aquatic hazard assessment should include testing for WSS.  相似文献   
8.
Irrigated Agriculture and Wildlife Conservation: Conflict on a Global Scale   总被引:10,自引:0,他引:10  
/ The demand for water to support irrigated agriculture has led to the demise of wetlands and their associated wildlife for decades. This thirst for water is so pervasive that many wetlands considered to be hemispheric reserves for waterbirds have been heavily affected; for example, the California and Nevada wetlands in North America, the Macquarie Marshes in Australia, and the Aral Sea in central Asia. These and other major wetlands have lost most of their historic supplies of water and some have also experienced serious impacts from contaminated subsurface irrigation drainage. Now mere shadows of what they once were in terms of biodiversity and wildlife production, many of the so-called "wetlands of international importance" are no longer the key conservation strongholds they were in the past. The conflict between irrigated agriculture and wildlife conservation has reached a critical point on a global scale. Not only has local wildlife suffered, including the extinction of highly insular species, but a ripple effect has impacted migratory birds worldwide. Human societies reliant on wetlands for their livelihoods are also bearing the cost. Ironically, most of the degradation of these key wetlands occurred during a period of time when public environmental awareness and scientific assertion of the need for wildlife conservation was at an all-time high. However, designation of certain wetlands as "reserves for wildlife" by international review boards has not slowed their continued degradation. To reverse this trend, land and water managers and policy makers must assess the true economic costs of wetland loss and, depending on the outcome of the assessment, use the information as a basis for establishing legally enforceable water rights that protect wetlands from agricultural development.  相似文献   
9.
A combination field and laboratorystudy was conducted to evaluate the ability of arecently developed bioindicator to detect detrimentalnutrient conditions in streams. The method utilizesbacterial growth on aquatic insects to determinenutrient impacts. Field investigations indicated thatelevated concentrations of nitrate and phosphate wereassociated with growth of filamentous bacteria oninsect body surfaces, and that there was a significantreduction in the density of major insect taxa in thenutrient-enriched stream reaches. Laboratoryinvestigations confirmed a strong linkage betweenbacterial growth and reduced survival of insects. Survival was examined for insects with bacterialinfestation ranging from 0% to greater than 50%coverage of the body surface. A threshold forcatastrophic mortality occurred at about 25% bodycoverage; there were few survivors above that amount. Based on these findings, the diagnostic endpoint forthe bioindicator is 25% body coverage by bacterialgrowth, a level that signifies major impacts and isalso easy to detect visually. This study providesadditional evidence that the insect-bacteriabioindicator is a reliable tool for assessing nutrientimpacts on stream macroinvertebrate communities. Thebioindicator should prove useful for identifyingnutrient-impacted sites as well as monitoring thesuccess of management actions to improve water quality.  相似文献   
10.
This article relates the productive and potential oil fields in India to plate junctions and other major tectonic features. High geothermal gradients are known to accelerate the expulsion of petroleum from the source bed, as well as its migration and accumulation in favourable reservoir rocks, resulting in high yield. Some of the world's major petroleum deposits occur along ‘failed arms’ associated with the plume generated triple junctions. Seven triple junctions have been located in the Indian region, and two more are identified here. Interestingly, India's off-shore petroleum prospects coincide with some of these triple junctions. Cet article établit la relation entre les champs de pétrole en production et potentiels en Inde à la théorie des plaques et à d'autres traits tectoniques importants. L'on sait que des gradients géothermiques élevés accélèrent l'expulsion du pétrole à partir de la roche-mère et favorisent la migration et l'accumulation dans des réservoirs convenables. Quelques-uns des plus grands champs de pétrole du monde se rencontrent en liaison avec des ‘bras morts’ associés avec un système triple de fossés d'effondrement. Sept systèmes triples ont été repérés en Inde et deux autres sont reconnus ici. II est intéressant de remarquer que les possibilités pétrolières de l'offshore indien coïncide avec certains de ces systèmes triples. Este artículo establece la relación entre los campos petrolíferos en producción y potenciales de India a la teoría de placas y otros aspectos tectónicos. Es sabido que una gradiente térmica alta ascelera la expulsión del petróleo desde la roca madre y favorece su migración y acumulación en rocas reservorio favorables. Algunos de los mayores depósitos de petróleo se encuentran a lo largo de los “brazos muertos” asociados a un sistema triple de unión de placas. Siete uniones de este tipo habia sido localizadas en India y otros dos más son identificados aquí. Es interesante notar que las posibilidades petroleras en la zona marítima de India coinciden con alguna forma de sistemas triple de placas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号