首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础理论   2篇
污染及防治   2篇
评价与监测   2篇
  2016年   1篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The aims of this study were to analyse sediment characteristics and macrobenthic assemblages in two very close Italian coastal lagoons (Lesina and Varano) and to assess the different behaviour between the two basins and the relationship between sediment matrix and benthic organisms within and between the two lagoons. The comparative study was performed in July 2007 at 13 sampling sites in Lesina lagoon and 15 sites in Varano basin for sediment grain size, total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and macrobenthic structure analyses. Both lagoons were generally dominated by fine-grained sediments (clay and silt components). The average contents of TOC and TN measured in Lesina was higher than in Varano (3.31% vs 2.52% for TOC and 5,200 μg·g???1 vs 3,713 μg·g???1 for TN); in contrast, the TP was lower (540 μg·g???1 vs 620 μg·g???1). Based on macrobenthic community patterns, the central zone in Varano lagoon and the eastern area in Lesina lagoon were characterised by the lowest abundance (168.7 ind·m???2 and 503.2 ind·m???2, respectively) and by the lowest number of species, as highlighted by the diversity indices (Shannon–Wiener, H range was 0.47–1.45 for Lesina and 0.00–1.68 for Varano; Margalef species richness, d range was 0.00–1.67 for Lesina lagoon and 0.00–2.38 for Varano basin). Ordination diagrams suggested an influence of marine and freshwater inputs on the sediment distribution in Varano lagoon and on macrobenthic assemblages in Lesina lagoon.  相似文献   
2.
In this paper hydrophilic (HI) and hydrophobic (HO) fractions of dissolved organic matter (DOM) extracted from soils at different degrees of salinisation were characterised by means of fluorescence spectroscopy in the emission, excitation and synchronous-scan modes. Results provided evidence of the different chemical nature of DOM fractions and allowed to distinguish hydrophilic and hydrophobic fractions extracted from the same soil substrate. The strong decrease in fluorescence intensity observed with the increasing salinity of the soils can be utilised to obtain information on the salinity level of different soil substrates by comparison of spectral fluorescence intensities.  相似文献   
3.
The photochemical behaviour of triadimenol (1) under various conditions has been examined. Significant degradation is obtained only in the presence of electron-acceptor sensitizers as 9,10-dicyanoanthracene or 2,4,6-triphenylpyrylium tetrafluoroborate, and long irradiation times are required. 1H-1,2,4-Triazole (2), 4-chlorophenyl formate (3), 4-chlorophenol (4), 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one (5), 4-chlorophenyl 2,2-dimethylpropanoate (6) and 4-chlorobenzoic acid (7) were identified as photoproducts by NMR and GC-MS.  相似文献   
4.
A solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method for the simultaneous determination of the organophosphorus pesticides (OPPs), phorate, diazinon, methyl-parathion, fenitrothion, malathion, fenthion, ethyl-parathion and methidathion, has been developed to study their soil/water distribution. The method was used in conjunction with a conventional 'batch equilibrium method' to assess the soil adsorption coefficients (Koc) of the target compounds in different soil samples with known organic carbon content. Contrary to traditional techniques, the present method is fast, solvent-free and highly sensitive, thus permitting the assessment of the Koc values of the target compounds even at low soil concentration levels, close to those encountered in real field contamination, where the Freudlich adsorption isotherms can be considered to be linear. The estimated Koc values were found to be in good agreement with those reported in the literature.  相似文献   
5.
BACKGROUND: The photolysis of pesticides is of high current interest since light is one of the most important abiotic factors which are responsible for the environmental fate of these substances and may induce their conversion into noxious products. The action of light can also be mediated by oxygen and synthetic or naturally occurring substances which act as sensitizers. Our objective in this study was to investigate the photochemical behaviour of the systemic fungicide furalaxyl in the presence of oxygen and various sensitizers, and to compare the toxicity of the main photoproduct(s) to that of the parent compound. Previous reports on the direct photolysis of the pesticide demonstrated a very slow degradation and the only identified photoproducts were N-2,6-xylyl-D,L-alaninare and 2,6-dimethylaniline. METHODS: Solutions of furalaxyl in CH3CN were photooxygenate using a 500W high-pressure mercury lamp (through a Pyrex glass filter, lambda>300 nm) or a 650W halogen lamp or sunlight and the proper sensitizer. When sunlight was used, aqueous solutions were employed. The photodegradation was checked by NMR and/or GC-MS. The photoproducts were spectroscopically evidenced and, when possible, isolated chromatographically. Acute toxicity tests were performed on the rotifer Brachionus calyciflorus, the crustacean cladoceran Daphnia magna and the anostracan Thamnocephalus platyurus, while chronic toxicity tests (sublethal endpoints) comprised a producer, the alga Pseudokirchneriella subcapitata and the crustacean Ceriodaphnia dubia, as a consumer. RESULTS AND DISCUSSION: In the presence of both oxygen and sensitizer, furalaxyl underwent rapid photochemical transformations mainly to N-disubstituted formamide, maleic anhydride and a 2(5H)-furanone derivative. The formation of these products was rationalized in terms of a furan endoperoxide intermediate derived from the reaction of furalaxyl with active dioxygenated species (singlet oxygen, superoxide anion or ground state oxygen). The 2(5H)-furanone exhibited a higher toxicity than the parent compound. CONCLUSION: This work reports the first data on the photosensitized oxygenation of furalaxyl with evidence of the high tendency of the pesticide to undergo photodegradation under these conditions leading, among other things, to a 2(5H)-furanone, which is more toxic than the starting furalaxyl towards aquatic organisms. RECOMMENDATIONS AND OUTLOOK: Investigation highlights that the photolytic fate of a pesticide, although quite stable to direct photoreaction due to its low absorption of solar radiation at ground level, can be significantly influenced in the environment by the presence of substances with energy or electron-transfer properties as natural dyes, e.g. chlorophyll, or synthetic pollutants, e.g. polycyclic aromatic hydrocarbons (PAH).  相似文献   
6.
Phytoplankton and benthic vegetation biomass undergoes spatial-temporal changes in relation to their life cycle, but also to meteorological conditions, physical-chemical variables, organic input and internal dynamism. The main aim of this work was to observe the effect of all environmental variables on the vegetative dynamic process in a protected zone of a Mediterranean costal lagoon (Lesina lagoon, SE Italy). Seven samplings were performed from 2010 to 2012 at 30 sites for nutrient and chlorophyll analyses, while TOC measurements and wet biomass evaluation were performed at 10 sites. Temperature, salinity and oxygen saturation were also measured by multiparametric probe and a visual census for vegetation was performed. Sites close to freshwater inflow were characterized by lower temperature and salinity, and high nitrate, with maxima of 191.05 μM in May 2010 and more than 250 μM in October 2010. Silicates drastically decreased from May 2010 (87.57 μM) to July 2010 (6.15 μM) and increased again in October (74.99 μM). Chl a concentrations were not on average higher than 6 mg m?3, but peaks of 20 mg m?3 were observed during May 2011 and May 2012. Benthic vegetation wet biomass collected in 2010 was approximately twice that collected in 2012, with a maximum of 27,554 g m?2 and a dominance of macroalgae (70 % in May 2010 and 40 % in August 2010). During period 2010, a simultaneous and drastic decreasing of both mean values of wet biomass and chl a was observed from May to October 2010. During period 2012 a shift of vegetation biomass was shown from May (phytoplankton prevalence) to August 2012, with angiosperm prevalence (more than 30 %).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号