首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   1篇
评价与监测   4篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 140 毫秒
1
1.
Alternaria and Cladosporium, known as the most allergenic spores were first collected by means of Durham gravimetric sampler from Eskisehir atmosphere from January 1, 2000 to December 31, 2001. The daily, monthly and annual variations in spores/cm(2) of Cladosporium and Alternaria were recorded. During this period, a total of 10.231 spores belonging to Cladosporium and Alternaria genera were recorded. Of these spores, 5,103 were identified in 2000 and 5,128 in 2001. While 63.09% of the total spores were those of Cladosporium, 36.91% were of Alternaria. Relationships between airborne fungal spore presence and meteorological conditions were statistically investigated. A Shapiro-Wilk test revealed that the airborne Cladosporium and Alternaria spores differed from a normal distribution. Thus, a Friedmann test was performed followed by a Pearson Correlation Analysis. The effects of rainfall, temperature and wind speed on Cladosporium and Alternaria numbers were non-significant according to the sites and months (p > 0.05), but the effects of relative humidity on Cladosporium and Alternaria numbers were significant (p < 0.01). Spore concentrations reached to their highest levels in May 2001.  相似文献   
2.
This study was performed between January 2004 and December 2004 in 13 stations in the Pediatric Unit of Edirne Government Hospital in order to determine the outdoor and indoor airborne microfungal and bacterial contents. The results of air samplings revealed that 1,376 microfungal and 2,429 bacterial colonies in total were isolated. The isolated microfungal specimens were identified and 65 species from 16 genera were determined. Among these, the most frequent genus was Cladosporium with 462 colonies (33.58%) followed by Alternaria with 310 (22.53%) and Penicillium with 280 (20.35%) colonies. The isolated bacterial samples were grouped based on their Gram-staining properties. The most frequent ones were Gram (+) cocci with 1,527 colonies (62.87%) followed by Gram (+) bacilli with 828 colonies (34.09%) and Gram (−) bacilli with 74 colonies (3.05%). Staphylococcus, Bacillus, Corynebacterium, and Microccus appeared to be the common genera isolated for all months. Statistical analyses were performed in order to see if there existed a relationship between meteorological conditions and the microfungal and bacterial species and their concentrations.  相似文献   
3.
Pathogenic and/or opportunistic fungal species are major causes of nosocomial infections, especially in controlled environments where immunocompromised patients are hospitalized. Indoor fungal contamination in hospital air is associated with a wide range of adverse health effects. Regular determination of fungal spore counts in controlled hospital environments may help reduce the risk of fungal infections. Because infants have inchoate immune systems, they are given immunocompromised patient status. The aim of the present study was to evaluate culturable airborne fungi in the air of hospital newborn units in the Thrace, Marmara, Aegean, and Central Anatolia regions of Turkey. A total of 108 air samples were collected seasonally from newborn units in July 2012, October 2012, January 2013, and April 2013 by using an air sampler and dichloran 18% glycerol agar (DG18) as isolation media. We obtained 2593 fungal colonies comprising 370 fungal isolates representing 109 species of 28 genera, which were identified through multi-loci gene sequencing. Penicillium, Aspergillus, Cladosporium, Talaromyces, and Alternaria were the most abundant genera identified (35.14, 25.40, 17.57, 2.70, and 6.22% of the total, respectively).  相似文献   
4.
Soil and air samples of seven different localities around Hamitabat Thermic Power Plant, 10 km far away from Luleburgaz/Kirklareli (Turkey), were taken between the years 2003 and 2004 with seasonal intervals. The samples were brought to the laboratory and their microfungal identifications were done. From the air samples, 737 microfungi colonies were isolated comprising 26 species belonging to eight genera. From soil samples, 170.6 × 104 colony-forming unit (CFU)/g was isolated from 33 species belonging to 16 genera. The most isolated genus from air samples was Alternaria (324 CFU, 43.96%), followed by Cladosporium (208 CFU, 25.52%) and Phoma (44 CFU, 5.40%). Penicillium was the most isolated genus from the soil samples with a value of 560,000 CFU/g (32.8%), followed by Fusarium (226,000 CFU/g, 13.12%) and Aspergillus (154,000 CFU/g, 9.03%). Among these species, Alternaria citri and Alternaria alternata are the most abundant species in air with 164 and 107 CFU, respectively, whereas Fusarium graminearum and Penicillium citrinum are the most abundant species in soil with CFU per gram values of 17.8 × 104 and 1.3 × 105. Correlation analysis was applied to determine whether or not there was a relationship between colony number of isolated fungal genera and meteorological factors. Some parameters of soil samples’ incontent during the research period were calculated using a computer analysis program. From the air samples, a positive correlation was found between relative humidity and Alternaria colonial counts and Cladosporium spore counts (r?=?0.912 and r?=?1.000, respectively). Similarly, with the analysis of soil samples, a positive correlation between colonial counts of Alternaria and soil pH and a positive correlation between colonial counts of Aspergillus and Penicillium and salt percentage concentration of soil were found.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号