首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
污染及防治   1篇
评价与监测   1篇
  2010年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 6 毫秒
1
1.

Introduction and background

Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time).

Discussion and perspectives

These topics were addressed during the workshop entitled “Aquatic Macrophyte Risk Assessment for Pesticides” (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.  相似文献   
2.
A new analytical technique based on DRIFTS spectroscopy has been developed for the specific and sensitive determination of size-fractionated wood dust from 37 mm glass fiber filter samples collected with the Respicon sampler. A translational diffuse reflectance apparatus was modified to accept filter samples by incorporating a special filter holder in the sample stage and a clockwork motor to drive the translational stage during infrared scanning, thus providing an average analysis across the filter face. Filter samples were pre-treated with ethyl acetate to uniformly redeposit dust onto the filter and extract potential chemical interferences. Two absorbance maxima (1251 and 1291 cm(-1)), corresponding to the cellulose content of the wood, were suitable for quantitation of wood dust. Analysis of seven species of wood at 1291 cm(-1) showed an equivalent quantitative response for all species except maple. The response at 1251 cm(-1) was more variable across species but more sensitive for the softwoods. There was a statistically significant effect of particle size on the analytical response, so that analytical standards should be matched to the samples in terms of particle size distribution. Analytical limit of detection was approximately 0.08 mg of wood dust per sample with overall precision of about 6%. Comparison of DRIFTS and gravimetric analyses of 51 pure wood dust samples ranging from about 0.2 to 2 mg yielded a slope of 1.08 and r2 equal to 0.9. Other particulate contaminants common in the industrial wood processing industry showed little or no interference with the determination of wood dust by this method.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号