首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
废物处理   2篇
综合类   1篇
评价与监测   1篇
  2021年   1篇
  2014年   1篇
  2008年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
Lake Baikal is the biggest reservoir of fresh water with unique flora and fauna; presently it is negatively affected by climate change, water warming, industrial emissions, shipping, touristic activities, and Siberian forest fires. The assessment of air pollution - related Baikal's ecosystem damage is an unsolved problem. Ship, based expedition exploring the Baikal atmospheric aerosol loading, was performed over the lake area in July 2018. We combine the aerosol near - water and vertical distributions over the Lake Baikal basin with meteorological observations and air mass transportation simulations. Lidar sounding of aerosol fields in the troposphere assesses the atmospheric background in the pristine areas and the pollution during fire-affected periods. Aerosol optical properties (scattering and spectral absorption) converted to the particle number size, black carbon (BC) mass, and Absorption Angstrom Exponent (AAE) provide the inside into aerosol characterization. Transport of industrial emissions from Krasnoyarsk and Irkutsk regions, and wildfire plumes from Republic of Yakutia relates the pollution sources to the increased concentrations of fine particle numbers, PM10 and BC mass over Southern and Northern/Central Baikal, respectively. The highest PM10 and BC are associated to the harbor and touristic areas of intensive shipping and residential biomass burning. Deposition estimates applied to aerosol data exhibit the pollution fluxes to water surface over the whole Baikal area. AAE marks the impact of coal combustion, residential biomass burning, and wildfires indicating the high pollution level of the Lake Baikal ecological system .  相似文献   
3.
Aerosol particles in the workplace of a detergent industry were sampled during July 2005 by a Berner low-pressure impactor. The samples were analyzed by atomic absorption spectrometry and ion chromatography in order to determine the size distribution of metallic elements and water-soluble inorganic ions. The size distributions of some characteristic metallic elements (Cu, Fe, Al) were unimodal with their maximum found in coarse particles. Among the water-soluble aerosol components , , Cl, and Ca++ were the major contributors to total particle mass. The lung deposition resulting from the partially hygroscopic aerosol is estimated. The calculated lung deposition reveals the impact of separate chemical aerosol compounds on the levels of the inhaled dose. The differences observed between the total and regional deposition of the different compounds appear mainly due to their different size distributions. An erratum to this article can be found at  相似文献   
4.
Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h?1. The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors’ concentrations were found to be compared well with the experimentally measured values.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号