首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
安全科学   1篇
评价与监测   1篇
  2012年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
个体防护装备国家标准作为国家标准的一个重要组成部分.其制修订工作除了要符合国家的各项规定外,还有其特殊性。现就其具体的工作流程,进行详细的介绍,供个体防护装备科研单位和企业参考。  相似文献   
2.
In this work we present the results of extensive characterization and optimization of the Ambient Ion Monitor-Ion Chromatograph (AIM-IC) system, an instrument developed by URG Corp. and Dionex Inc. for simultaneous hourly measurements of the water-soluble chemical composition of atmospheric fine particulate matter (PM(2.5)) and associated precursor gases. The sampling assembly of the AIM-IC consists of an inertial particle size-selection assembly, a parallel-plate wet denuder (PPWD) for the collection of soluble gases, and a particle supersaturation chamber (PSSC) for collection of particles, in series. The analytical assembly of the AIM-IC consists of anion and cation IC units. The system detection limits were determined to be 41 ppt, 5 ppt, and 65 ppt for gas phase NH(3(g)), SO(2(g)), and HNO(3(g)) and 29 ng m(-3), 3 ng m(-3), and 45 ng m(-3) for particle phase NH(4)(+), SO(4)(2-), and NO(3)(-) respectively. From external trace gas calibrations with permeation sources, we determined that the AIM-IC is biased low for NH(3(g)) (11%), SO(2(g)) (19%), and HNO(3(g)) (12%). The collection efficiency of SO(2(g)) was found to strongly depend on the composition of the denuder solution and was found to be the most quantitative with 5 mM H(2)O(2) solution for mixing ratios as high as 107 ppb. Using a cellulose membrane in the PPWD, the system responded to changes in SO(2(g)) and HNO(3(g)) within an hour, however for NH(3(g)), the timescale can be closer to 20 h. With a nylon membrane, the instrument response time for NH(3(g)) was significantly improved, becoming comparable to the responses for SO(2(g)) and HNO(3(g)). Performance of the AIM-IC for collection and analysis of PM(2.5) was evaluated by generating known number concentrations of ammonium sulfate and ammonium nitrate particles (with an aerodynamic diameter of 300 nm) under laboratory conditions and by comparing AIM-IC measurements to measurements from a collocated Aerosol Mass Spectrometer (AMS) during a field-sampling campaign. On average, the AIM-IC and AMS measurements agreed well and captured rapid ambient concentration changes at the same time. In this work we also present a novel inlet configuration and plumbing for the AIM-IC which minimizes sampling inlet losses, reduces peak smearing due to sample carryover, and allows for tower-height sampling from the base of a research tower.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号