首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
安全科学   1篇
评价与监测   2篇
  2009年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
Specific PCR amplification and probe hybridization techniques were applied to examine the compositions of airborne fungi in samples from three different environments. The results from microscopic and CFU counting were compared to those of the molecular-based detections. The detection sensitivity for PCR amplifications was 9 to 73 spores and 1.3 to 19.3 CFUs per PCR reaction. The hybridization detection limit was 2 to 4 spores and 0.2 to 1.2 CFU. The hybridization method was more sensitive than PCR amplification and showed less variation among samples. Using specific PCR primers and probes we identified the presence of several fungal groups and species in the air samples. Specific detections through probe hybridization to PCR products amplified with universal or group-specific fungal primers have promising applications in the examination of air samples for environmental monitoring.  相似文献   
2.
基于Verhulst模型的新建隧道顶板下沉预测研究   总被引:2,自引:0,他引:2  
隧道顶板下沉量预测对隧道安全施工十分重要.通过分析隧道下沉过程,指出其具有"S"型曲线特征,探讨了采用Verhulst模型进行隧道顶板下沉预测的适用性和可行性,并运用MATLAB软件开发相关程序,模拟遵赤高速公路中枢隧道YK39+134.6断面沉降过程,获得相应的预测方程.通过对比其预测结果、回归分析预测结果和实测值,发现该模型的顶板沉降预测值与实测值最接近,证实运用灰色Verhulst模型预测隧道顶板沉降量是合理、可行的.  相似文献   
3.
Cladosporium is one of the most common airborne molds found in indoor and outdoor environments. Cladosporium spores are important aeroallergens, and prolonged exposure to elevated spore concentrations can provoke chronic allergy and asthma. To accurately quantify the levels of Cladosporium in indoor and outdoor environments, two real-time PCR systems were developed in this study. The two real-time PCR systems are highly specific and sensitive for Cladosporium detection even in a high background of other fungal DNAs. These methods were employed to quantify Cladosporium in aerosols of five different indoor environments. The investigation revealed a high spore concentration of Cladosporium (10(7) m(-3)) in a cow barn that accounted for 28-44% of the airborne fungal propagules. In a countryside house that uses firewood for heating and in a paper and pulp factory, Cladosporium was detected at 10(4) spores m(-3), which accounted for 2-6% of the fungal propagules in the aerosols. The concentrations of Cladosporium in these three indoor environments far exceeded the medical borderline level (3000 spores m(-3)). In a power station and a fruit and vegetable storage, Cladosporium was found to be a minor component in the aerosols, accounted for 0.01-0.1% of the total fungal propagules. These results showed that monitoring Cladosporium in indoor environments is more important than in outdoor environments from the public health point of view. Cladosporium may not be the dominant fungi in some indoor environments, but its concentration could still be exceeding the threshold value for clinical significance. The methods developed in this study could facilitate accurate detection and quantification of Cladosporium for public health related risk assessment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号