首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5640篇
  免费   0篇
废物处理   296篇
环保管理   769篇
综合类   525篇
基础理论   2048篇
污染及防治   641篇
评价与监测   437篇
社会与环境   924篇
  2022年   1篇
  2019年   1篇
  2018年   602篇
  2017年   573篇
  2016年   470篇
  2015年   54篇
  2014年   10篇
  2013年   4篇
  2012年   225篇
  2011年   783篇
  2010年   444篇
  2009年   492篇
  2008年   642篇
  2007年   897篇
  2006年   1篇
  2005年   93篇
  2004年   31篇
  2003年   106篇
  2002年   139篇
  2001年   16篇
  2000年   11篇
  1999年   5篇
  1998年   23篇
  1984年   11篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1964年   1篇
排序方式: 共有5640条查询结果,搜索用时 15 毫秒
1.
Mitigation and adaptation synergy in forest sector   总被引:1,自引:1,他引:1  
Mitigation and adaptation are the two main strategies to address climate change. Mitigation and adaptation have been considered separately in the global negotiations as well as literature. There is a realization on the need to explore and promote synergy between mitigation and adaptation while addressing climate change. In this paper, an attempt is made to explore the synergy between mitigation and adaptation by considering forest sector, which on the one hand is projected to be adversely impacted under the projected climate change scenarios and on the other provide opportunities to mitigate climate change. Thus, the potential and need for incorporating adaptation strategies and practices in mitigation projects is presented with a few examples. Firstly, there is a need to ensure that mitigation programs or projects do not increase the vulnerability of forest ecosystems and plantations. Secondly, several adaptation practices could be incorporated into mitigation projects to reduce vulnerability. Further, many of the mitigation projects indeed reduce vulnerability and promote adaptation, for example; forest and biodiversity conservation, protected area management and sustainable forestry. Also, many adaptation options such as urban forestry, soil and water conservation and drought resistant varieties also contribute to mitigation of climate change. Thus, there is need for research and field demonstration of synergy between mitigation and adaptation, so that the cost of addressing climate change impacts can be reduced and co-benefits increased.  相似文献   
2.
 This paper deals with the present scenario of hazardous waste management practices in Thailand, and gives some insights into future prospects. Industrialization in Thailand has systematically increased the generation of hazardous waste. The total hazardous waste generated in 2001 was 1.65 million tons. It is estimated that over 300 million kg/year of hazardous waste is generated from nonindustrial, community sources (e.g., batteries, fluorescent lamps, cleansing chemicals, pesticides). No special facilities are available for handling these wastes. There are neither well-established systems for separation, storage, collection, and transportation, nor the effective enforcement of regulations related to hazardous wastes management generated from industrial or nonindustrial sectors. Therefore, because of a lack of treatment and disposal facilities, these wastes find their way into municipal wastewaters, public landfills, nearby dump sites, or waterways, raising serious environmental concern. Furthermore, Thailand does not have an integrated regulatory framework regarding the monitoring and management of hazardous materials and wastes. In addition to the absence of a national definition of hazardous wastes, limited funding has caused significant impediments to the effective management of hazardous waste. Thus, current waste management practices in Thailand present significant potential hazards to humans and the environment. The challenging issues of hazardous waste management in Thailand are not only related to a scarcity of financial resources (required for treatment and disposal facilities), but also to the fact that there has been no development of appropriate technology following the principles of waste minimization and sustainable development. A holistic approach to achieving effective hazardous waste management that integrates the efforts of all sectors, government, private, and community, is needed for the betterment of human health and the environment. Received: February 26, 2001 / Accepted: October 11, 2002  相似文献   
3.
4.
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies.  相似文献   
5.
Volunteer monitoring of natural resources is promoted for its ability to increase public awareness, to provide valuable knowledge, and to encourage policy change that promotes ecosystem health. We used the case of volunteer macroinvertebrate monitoring (VMM) in streams to investigate whether the quality of data collected is correlated with data use and organizers' perception of whether they have achieved these outcomes. We examined the relation between site and group characteristics, data quality, data use, and perceived outcomes (education, social capital, and policy change). We found that group size and the degree to which citizen groups perform tasks on their own (rather than aided by professionals) positively correlated with the quality of data collected. Group size and number of years monitoring positively influenced whether a group used their data. While one might expect that groups committed to collecting good-quality data would be more likely to use it, there was no relation between data quality and data use, and no relation between data quality and perceived outcomes. More data use was, however, correlated with a group's feeling of connection to a network of engaged citizens and professionals. While VMM may hold promise for bringing citizens and scientists together to work on joint conservation agendas, our data illustrate that data quality does not correlate with a volunteer group's desire to use their data to promote regulatory change. Therefore, we encourage scientists and citizens alike to recognize this potential disconnect and strive to be explicit about the role of data in conservation efforts.  相似文献   
6.
Stream fish bioassessment methods assume that fish assemblages observed in sample sites reflect responses to local stressors, but fish assemblages are influenced by local factors as well as regional dispersal to and from connected streams. We hypothesized that fish movement to and from refugia and source populations in connected rivers (i.e., riverine dispersal) would weaken or decouple relations between fish community metrics and local environmental conditions. We compared fish-environment relations between streams that flow into large rivers (mainstem tributaries) and streams that lack riverine confluences (headwater tributaries) at multiple spatial grains using data from the USEPA's Environmental Monitoring and Assessment Program in the mid-Atlantic highlands, USA (n = 157 sites). Headwater and mainstem tributaries were not different in local environmental conditions, but showed important differences in fish metric responses to environmental quality gradients. Stream sites flowing into mainstem channels within 10 fluvial km showed consistently weaker relations to local environmental conditions than stream sites that lacked such mainstem connections. Moreover, these patterns diminished at longer distances from riverine confluences, consistent with the hypothesis of riverine dispersal. Our results suggest that (1) the precision of fish bioassessment metrics may be improved by calibrating scoring criteria based on the spatial position of sites within stream networks and (2) the spatial grain of fish bioassessment studies may be manipulated to suit objectives by including or excluding fishes exhibiting riverine dispersal.  相似文献   
7.
8.
The mineral contents of Pistacia vera kernels were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The minimum and maximum values of K, P, Ca, Mg, and S elements ranged from 6,333 to 8,064 mg/kg, 3,630 to 5,228 mg/kg, 1,614 to 3,226 mg/kg, 1,716 to 2,402 mg/kg, and 1,417 to 1,825 mg/kg, respectively. In addition, the mean values of Fe, Zn, Cu, Mn, B, Mo, Cr and Ni elements were determined as 42.48, 20.52, 12.81, 7.48, 11.31, 0.106, 0.511 and 1.67 mg/kg, respectively. Ash levels of kernels were found between 2.28 % (Urfa) and 2.79 % (Halebi). In addition, crude oil and protein contents were determined between 48.8 % (Halebi) to 55.3 % (Siirt) and 23.33 % (Uzun) to 27.16 % (Halebi), respectively.  相似文献   
9.
Industrial agriculture is yearly responsible for the loss of 55–100 Pg of historical soil carbon and 9.9 Tg of reactive nitrogen worldwide. Therefore, management practices should be adapted to preserve ecological processes and reduce inputs and environmental impacts. In particular, the management of soil organic matter (SOM) is a key factor influencing C and N cycles. Soil microorganisms play a central role in SOM dynamics. For instance, microbial diversity may explain up to 77 % of carbon mineralisation activities. However, soil microbial diversity is actually rarely taken into account in models of C and N dynamics. Here, we review the influence of microbial diversity on C and N dynamics, and the integration of microbial diversity in soil C and N models. We found that a gain of microbial richness and evenness enhances soil C and N dynamics on the average, though the improvement of C and N dynamics depends on the composition of microbial community. We reviewed 50 models integrating soil microbial diversity. More than 90 % of models integrate microbial diversity with discrete compartments representing conceptual functional groups (64 %) or identified taxonomic groups interacting in a food web (28 %). Half of the models have not been tested against an empirical dataset while the other half mainly consider fixed parameters. This is due to the difficulty to link taxonomic and functional diversity.  相似文献   
10.

Background, aim, and scope  

Alum (aluminum sulfate) is the currently preferred chemical amendment for phosphorus (P) treatment in poultry litter (PL). Aluminum-based drinking-water treatment residuals (Al-WTRs) are the waste by-product of the drinking-water treatment process and have been effectively used to remove P from aqueous solutions, but their effectiveness in PL water extracts has not been studied in detail. Elevated cost associated with alum could be minimized by using the equally effective WTRs to remove soluble P from PL, and they can be obtained at a minimal cost from drinking-water treatment plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号