首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   2篇
  国内免费   2篇
安全科学   1篇
废物处理   5篇
环保管理   20篇
综合类   4篇
基础理论   35篇
环境理论   3篇
污染及防治   58篇
评价与监测   33篇
社会与环境   7篇
灾害及防治   1篇
  2023年   2篇
  2022年   3篇
  2021年   12篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   9篇
  2016年   5篇
  2015年   4篇
  2014年   10篇
  2013年   26篇
  2012年   7篇
  2011年   8篇
  2010年   12篇
  2009年   6篇
  2008年   7篇
  2007年   13篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1994年   5篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1966年   1篇
  1959年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
1.
Environmental Science and Pollution Research - Seasonal distribution of phytoplankton community and size structure was assessed in three different tropical ecosystems of the western Bay of Bengal...  相似文献   
2.
3.
4.
Environmental Science and Pollution Research - Marine and freshwater pollution caused by transport of invasive species in shipping ballast water is a major global problem and will increase in...  相似文献   
5.
Environmental Science and Pollution Research - In this study, the air pollution–related quality of life (AP-QOL) questionnaire was carried out in two geographically and economically different...  相似文献   
6.
Source apportionment of fine particles (PM2.5, particulate matter < 2 microm in aerodynamic diameter) is important to identify the source categories that are responsible for the concentrations observed at a particular receptor. Although receptor models have been used to do source apportionment, they do not fully take into account the chemical reactions (including photochemical reactions) involved in the formation of secondary fine particles. Secondary fine particles are formed from photochemical and other reactions involving precursor gases, such as sulfur dioxide, oxides of nitrogen, ammonia, and volatile organic compounds. This paper presents the results of modeling work aimed at developing a source apportionment of primary and secondary PM2.5. On-road mobile source and point source inventories for the state of Tennessee were estimated and compiled. The national emissions inventory for the year 1999 was used for the other states. U.S. Environmental Protection Agency Models3/Community Multi-Scale Air Quality modeling system was used for the photochemical/secondary particulate matter modeling. The modeling domain consisted of a nested 36-12-4-km domain. The 4-km domain covered the entire state of Tennessee. The episode chosen for the modeling runs was August 29 to September 9, 1999. This paper presents the approach used and the results from the modeling and attempts to quantify the contribution of major source categories, such as the on-road mobile sources (including the fugitive dust component) and coal-fired power plants, to observed PM2.5 concentrations in Tennessee. The results of this work will be helpful in policy issues targeted at designing control strategies to meet the PM2.5 National Ambient Air Quality Standards in Tennessee.  相似文献   
7.
Understanding the importance of cross-sectoral implications of climate and socio-economic change in Scotland is essential for adaptation policy. This study explored the direct and indirect sectoral impacts of future change using the CLIMSAVE Integrated Assessment Platform. There is great spatial diversity in projected impacts across Scotland, and increasing uncertainty in the direction of change of impacts from the national to regional scale associated with climate uncertainty. Further uncertainty associated with socio-economic change results in 6 out of 13 indicators (artificial surfaces, biodiversity vulnerability, forest area, land-use intensity, irrigation usage and land-use diversity) with robust directions of change at the national scale and only three (artificial surfaces, forest area and irrigation usage) that are robust across all regions of Scotland. Complex interactions between socio-economic scenario assumptions (e.g. food imports, population and GDP), climatic suitability and agricultural productivity and profitability lead to significant national and regional changes in the distribution and extent of land cover types, with resultant cross-sectoral interactions with water, forestry and biodiversity. Consequently, stakeholders characterised robust adaptation policy options, within the CLIMSAVE participatory process, as those beneficial to society (and the country) in all scenarios, irrespective of the direction of change of the impacts. The integration in CLIMSAVE of a participatory scenario development process and an integrated participatory modelling framework has allowed the exploration of future uncertainty in a structured approach and better represented the importance of qualitative information and the social and institutional contexts within adaptation research.  相似文献   
8.
This study presents an assessment of the performance of the Community Multiscale Air Quality (CMAQ) photochemical model in forecasting daily PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter) mass concentrations over most of the eastern United States for a 2-yr period from June 14, 2006 to June 13, 2008. Model predictions were compared with filter-based and continuous measurements of PM2.5 mass and species on a seasonal and regional basis. Results indicate an underprediction of PM2.5 mass in spring and summer, resulting from under-predictions in sulfate and total carbon concentrations. During winter, the model overpredicted mass concentrations, mostly at the urban sites in the northeastern United States because of overpredictions in unspeciated PM2.5 (suggesting possible overestimation of primary emissions) and sulfate. A comparison of observed and predicted diurnal profiles of PM2.5 mass at five sites in the domain showed significant discrepancies. Sulfate diurnal profiles agreed in shape across three sites in the southern portion of the domain but differed at two sites in the northern portion of the domain. Predicted organic carbon (OC) profiles were similar in shape to mass, suggesting that discrepancies in mass profiles probably resulted from the underprediction in OC. The diurnal profiles at a highly urbanized site in New York City suggested that the overpredictions at that site might be resulting from overpredictions during the morning and evening hours, displayed as sharp peaks in predicted profiles. An examination of the predicted planetary boundary layer (PBL) heights also showed possible issues in the modeling of PBL.  相似文献   
9.
ABSTRACT

Solar geoengineering, which seeks to cool the planet by reflecting a small fraction of sunlight back into space, has drawn the attention of scientists and policymakers as climate change remains unabated. Unlike mitigation, solar geoengineering could quickly and cheaply lower global temperatures. It is also imperfect. Its environmental impacts remain unpredictable, and its low cost and immediate effects may result in ‘moral hazard,’ potentially crowding out costly mitigation efforts. There is little understanding about how the public will respond to such tradeoffs. To address this, a 1000-subject nationally representative poll focused on solar geoengineering was conducted as part of the Cooperative Congressional Election Study (CCES) of the US electorate in October–November 2016. The importance that individuals place on solar geoengineering’s speed and cost predicts their support for it, but there is little to no relationship between their concerns about its shortcomings and support for its research and use. Acquiescence bias appears to be an important factor for attitudes around solar geoengineering and moral hazard.  相似文献   
10.
Black carbon (BC) or elemental carbon (EC) is a by-product of incomplete fuel combustion, and contributes adversely to human health, visibility, and climate impacts. Previous studies have examined nondestructive techniques for particle light attenuation measurements on Teflon® filters to estimate BC. The incorporation of an inline Magee Scientific OT21 transmissometer into the MTL AH-225 robotic weighing system provides the opportunity to perform optical transmission measurements on Teflon filters at the same time as the gravimetric mass measurement. In this study, we characterize the performance of the inline OT21, and apply it to determine the mass absorption cross-section (MAC) of PM2.5 BC across the United States. We analyzed 5393 archived Teflon® filters from the Chemical Speciation Network (CSN) collected during 2010–2011 and determined MAC by comparing light attenuation on Teflon® filters to corresponding thermal EC on quartz-fiber filters. Results demonstrated the importance of the initial transmission (I0) value used in light attenuation calculations. While light transmission varied greatly within filter lots, the average I0 of filter blanks during the sampling period provided an estimate for archived filters. For newly collected samples, it is recommended that filter-specific I0 measurements be made (i.e., same filter before sample collection). The estimated MAC ranged from 6.9 to 9.4 m2/g and varied by region and season across the United States, indicating that using a default value may lead to under- or overestimated BC concentrations. An analysis of the chemical composition of these samples indicated good correlation with EC for samples with higher EC content as a fraction of total PM2.5 mass, while the presence of light-scattering species such as crustal elements impacted the correlation affecting the MAC estimate. Overall, the method is demonstrated to be a quick, cost-effective approach to estimate BC from archived and newly sampled Teflon® filters by combining both gravimetric and BC measurements.

Implications: Robotic optical analysis is a valid, cost-effective means to obtain a vast amount of BC data from archived and current routine filters. A tailored mass absorption cross-section by region and season is necessary for a more representative estimate of BC. Initial light transmission measurements play an important role due to the variability in blank filter transmission. Combining gravimetric mass and BC analysis on a single Teflon® filter reduces costs for monitoring agencies and maximizes data collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号