首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
废物处理   1篇
环保管理   5篇
基础理论   1篇
社会与环境   2篇
  2018年   2篇
  2015年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
  1990年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Regional Environmental Change - Water markets are a prime example of decentralised resource allocation, yet their success often depends on strong coordination institutions, particularly as water is...  相似文献   
2.
The concentrations of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) were measured in water collected from the Southern Ocean 10 km offshore from Davis Station, Antarctica, during the period May 1987 to January 1988, inclusive. During winter and spring, when the sea-ice was up to 1.9 m thick, DMS, DMSP and DMSO concentrations were low (0.2 to 1.5 nM), as were phytoplankton numbers. The maximum concentration of the sulfur compounds generally occurred in the top 10 m of the water column. DMS levels rose dramatically from early December onwards, reaching a peak of 290 nM at a depth of 15 m in January. This concentration is higher than reported elsewhere in the ocean. These high concentrations occurred at the same time as a bloom of the algaPhaeocystis pouchetii. A significant correlation occurred between DMS concentration and cell numbers of the alga. The ratio of DMS concentration to the number of cells of the alga was considerably higher than reported for blooms of this species elsewhere in the ocean. Up to 10% of the total global flux of DMS to the atmosphere may emanate from antarctic seas.  相似文献   
3.
Regional Environmental Change -  相似文献   
4.
Community water systems (CWS) face significant competing forces for change from decreasing water resource availability, stricter water quality regulations, decreasing federal subsidies, increasing public scrutiny, decreasing financial health, and increasing infrastructure replacement costs. These competing forces necessitate increasing consolidation responses among financially stressed CWS. Consolidation responses allow financially stressed CWS to increase levels of service by taking advantage of economy of scale benefits, such as eliminating service duplications across administration and operational functions. Consolidation responses also promote improved financial accountability among consolidating CWS, especially when operating as integral subsystems of a larger regional drinking water supply (RDWS) system. The goal of this paper is to propose a conceptual model for robust performance assessment and evaluation (PAE) among consolidating CWS. The objectives of this paper are to conceptualize methods for: (1) consistent performance assessment and (2) uniform summative performance evaluation among consolidating CWS. The expected outcome from implementing robust PAE among consolidating CWS is increased levels of service through transparent benchmarking and improved financial accountability. The proposed robust PAE model provides the basis for constructing decision support system (DSS) tools that estimate efficient solutions for allocating limited financial resources among consolidating CWS. The paper is a significant departure from current CWS PAE approaches in two ways. First, it provides a goal-oriented approach for robust PAE among consolidating CWS. Second, it constructs efficiency-based performance metrics to temporally and spatially monitor the degree of attainment of the RDWS systems' goal.  相似文献   
5.
Abstract: Declining reservoir storage has raised the specter of the first water shortage on the Lower Colorado River since the completion of Glen Canyon and Hoover Dams. This focusing event spurred modeling efforts to frame alternatives for managing the reservoir system during prolonged droughts. This paper addresses the management challenges that arise when using modeling tools to manage water scarcity under variable hydroclimatology, shifting use patterns, and institutional complexity. Assumptions specified in modeling simulations are an integral feature of public processes. The policymaking and management implications of assumptions are examined by analyzing four interacting sources of physical and institutional uncertainty: inflow (runoff), depletion (water use), operating rules, and initial reservoir conditions. A review of planning documents and model reports generated during two recent processes to plan for surplus and shortage in the Colorado River demonstrates that modeling tools become useful to stakeholders by clarifying the impacts of modeling assumptions at several temporal and spatial scales. A high reservoir storage‐to‐runoff ratio elevates the importance of assumptions regarding initial reservoir conditions over the three‐year outlook used to assess the likelihood of reaching surplus and shortage triggers. An ensemble of initial condition predictions can provide more robust initial conditions estimates. This paper concludes that water managers require model outputs that encompass a full range of future potential outcomes, including best and worst cases. Further research into methods of representing and communicating about hydrologic and institutional uncertainty in model outputs will help water managers and other stakeholders to assess tradeoffs when planning for water supply variability.  相似文献   
6.
Municipal solid waste management (MSWM) in the United States is a system comprised of regulatory, administrative, market, technology, and social subcomponents, and can only be understood in the context of its historical evolution. American cities lacked organized public works for street cleaning, refuse collection, water treatment, and human waste removal until the early 1800s. Recurrent epidemics forced efforts to improve public health and the environment. The belief in anticontagionism led to the construction of water treatment and sewerage works during the nineteenth century, by sanitary engineers working for regional public health authorities. This infrastructure was capital intensive and required regional institutions to finance and administer it. By the time attention turned to solid waste management in the 1880s, funding was not available for a regional infrastructure. Thus, solid waste management was established as a local responsibility, centred on nearby municipal dumps. George Waring of New York City organized solid waste management around engineering unit operations; including street sweeping, refuse collection, transportation, resource recovery and disposal. This approach was adopted nationwide, and was managed by City Departments of Sanitation. Innovations such as the introduction of trucks, motorized street sweepers, incineration, and sanitary landfill were developed in the following decades. The Resource Conservation and Recovery Act of 1976 (RCRA), is the defining legislation for MSWM practice in America today. It forced the closure of open dumps nationwide, and required regional planning for MSWM. The closure of municipal dumps caused a 'garbage crisis' in the late 1980s and early 1990s. Private companies assumed an expanded role in MSWM through regional facilities that required the transportation of MSW across state lines. These transboundary movements of MSW created the issue of flow control, in which the US Supreme Court affirmed the protection of garbage under the Commerce Clause of the Constitution. Thus MSWM in America today is largely managed by municipalities, and operated by a relatively small number of private companies. It consists of a mixture of landfill, incineration, recycling, and composting, and is regulated under RCRA, the Clean Air Act and other related federal and state laws.  相似文献   
7.
Australia's Murray–Darling basin (MDB) water plan is an ambitious attempt to balance ecological, social and economic benefits, where a key aspect of the reform process has been recovery of water for environmental use. This paper focuses on a set of initiatives established by a local non-governmental organisation and an Indigenous community designed to engage with local values and priorities and incorporate them into this complex river basin governance system. Contrary to expectations that local and basin-scale interests and outcomes will diverge, the case studies reveal the ability for local groups to collaboratively manage both land and water resources to achieve locally important outcomes, and contribute to basin-scale outcomes. The analysis also highlights a progressive style of community-based environmental management for water management that utilises multiple institutional arrangements and planning pathways to protect the values that are important to local communities, and to nest those values within the broader effort to sustainably manage the basin's water resources.  相似文献   
8.
This paper presents a practical risk assessment methodology to provide drinking water infrastructure (DWI) decision-makers with an objective risk assessment tool. The purpose of this risk assessment tool is to maintain the desired level-of-service or systems reliability [r(f)], while managing the financial uncertainty of the expected budgetary impact within the capital improvement program (CIP). The goal of this paper is to demonstrate the value of an objective risk assessment tool for estimating the DWI decision-maker's sensitivity to the risk of systems failure (R). The objectives are to: (1) incorporate probability of systems failure [p(f)] into the CIP budgetary analysis process and (2) evaluate the affects of p(f) on the expected CIP budgetary outcome. The magnitude of the expected budgetary impact is managed through the DWI decision-maker's sensitivity to R, which is represented by the level of the rate of reinvestment (RR). The expected result of the proposed risk assessment tool demonstrates that by proactively managing R to maintain a desired r(f) will effectively manage the impact of uncertainty on the expected budgetary outcome within the CIP. The expected contribution of the practical risk assessment methodology is to provide DWI decision-makers with the ability to reduce budgetary uncertainty when allocating limited financial resources among competing operational, repair, maintenance, and expansion activities within the CIP. The conclusions of the paper reveal that if DWI decision-makers assume risk-avoidance positions through proactive asset management (AM) strategies, they will achieve positive affects on expected budgetary outcomes.  相似文献   
9.
Capacity Factor Analysis is a decision support system for selection of appropriate technologies for municipal sanitation services in developing communities. Developing communities are those that lack the capability to provide adequate access to one or more essential services, such as water and sanitation, to their residents. This research developed two elements of Capacity Factor Analysis: a capacity factor based classification for technologies using requirements analysis, and a matching policy for choosing technology options. First, requirements analysis is used to develop a ranking for drinking water supply and greywater reuse technologies. Second, using the Capacity Factor Analysis approach, a matching policy is developed to guide decision makers in selecting the appropriate drinking water supply or greywater reuse technology option for their community. Finally, a scenario-based informal hypothesis test is developed to assist in qualitative model validation through case study. Capacity Factor Analysis is then applied in Cimahi Indonesia as a form of validation. The completed Capacity Factor Analysis model will allow developing communities to select drinking water supply and greywater reuse systems that are safe, affordable, able to be built and managed by the community using local resources, and are amenable to expansion as the community's management capacity increases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号