首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础理论   1篇
社会与环境   3篇
  2022年   1篇
  2017年   1篇
  2016年   1篇
  1994年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The Krishna–Godavari coastal region in east coast of India has a 525.15-km-long coastline with low-lying tidal mudflats, beaches, mangrove swamp, creek and tidal channels. Recently, the increasing frequency of tropical cyclones in the Bay of Bengal, i.e., Phylin and Hudhud in Andhra Pradesh coast, and the devastating impact of the 2004 tsunami in India increased the significance in assessing the vulnerability of the coastal lands to inundation and flooding, notably in the context of climate change-induced sea level rise. This study aims to estimate a coastal vulnerability index (CVI) for the coastal subregion of Krishna–Godavari delta and to use the calculated index to evaluate the vulnerability of 14 coastal talukas of the Krishna–Godavari delta region. This CVI is calculated by using four geological and three physical parameters characterizing the vulnerability of the study coastal region, including regional slope, coastal elevation, geomorphology, significant wave height, mean tidal range and relative sea level using different conventional and remotely sensed data. Using a composite coastal vulnerability index based on the relative risk rating of those parameters, each of the 14 coastal talukas was classified according to their vulnerability. The CVI results depict that coasts are least and most vulnerable to inundation, flooding and erosion of coastal lands where geological parameters are more efficient to CVI. The paper alerts to decision makers and planners to mitigate the natural disaster and manage the coastal zone and is a primary step toward prioritizing coastal lands for climate change adaptation strategies in the view of increased storminess and projected sea level rise.  相似文献   
2.
Discussion   总被引:1,自引:0,他引:1  
  相似文献   
3.
Environment, Development and Sustainability - Watersheds in the subtropical Himalayan basins are highly prone to land degradation due to deforestation, landslides, intensive agriculture, population...  相似文献   
4.
Physical and ecological responses of the coastal areas in the vicinity of Mumbai, India, due to relative sea level rise are examined by different inundation scenarios. Evaluation of potential habitat loss under sea level rise was made by incorporating the land use/land cover (LULC) adopted from the digital elevation model with the satellite imagery. LULC categories overlaid on 1.0, 2.0, 3.0 and 4.0 m coastal elevation showed that the coastal areas of Mumbai were mostly covered by vegetation followed by barren land, agricultural land, urban areas and water bodies. For the relative sea level rise scenarios of 1.0, 2.0, 3.0 and 4.0 m, the tidal inundation areas were estimated to be 257.85, 385.58, 487.56 and 570.63 km2, respectively, using GIS techniques. The losses of urban areas were also estimated at 25.32, 41.64, 54.61 and 78.86 km2 for the 1.0, 2.0, 3.0 and 4.0 m relative sea level rise, respectively, which is most alarming information for the most populated city on the eastern coast of India. The results conclude that relative sea level rise scenario will lead profound impacts on LULC categories as well as on coastal features and landforms in the adjoining part of Mumbai. The sea level rise would also reduce the drainage gradients that promote flooding condition to rainstorms and subsequently increase saltwater intrusion into coastal regions. Alterations in the coastal features and landforms correlated with inundation characteristics that make the coastal region more vulnerable in the coming decades due to huge development activities and population pressures in Mumbai.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号