首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
安全科学   1篇
环保管理   1篇
污染及防治   12篇
社会与环境   2篇
  2016年   1篇
  2014年   1篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.  相似文献   
2.
3.
One of the main problems in using environmental cost-benefit analysis is deciding on the relevant population: whose benefits should we count? This is important since aggregate benefits depend on both per-person benefit and the number of beneficiaries. Yet this latter term is often hard to evaluate. Distance-decay functions are one way of addressing this problem. In this paper, we present estimates of distance-decay functions for a particular environmental improvement, namely a reduction in low flow problems on the River Mimram in Southern England. We do this both for users and non-users, in the context of a contingent valuation study of the benefits of improving low flow conditions. We test whether distance-decay effects for mean Willingness to Pay are stronger for a single environmental good (the River Mimram, in this case) than for a more inclusive set (here, all rivers in Thames region which suffer from low flow problems). Finally, we explore the impact on part-whole bias, in terms of the relationship between WTP for an individual site and WTP for a more inclusive group of sites, of allowing for distance-decay effects.  相似文献   
4.
5.
The capacity of species to adapt both physiologically and genetically to contaminants may allow populations to persist in polluted environments. Such 'adaptation' can have important implications for risk assessment, since it may mean that prediction based on extrapolation of toxicity studies with na?ve populations may prove invalid for long-term contaminated sites. To investigate the evolution of zinc resistance in Eisenia fetida, worms from a previously unexposed population (parent) were selected and reared over two generations (F1, F2) while exposed to zinc in the laboratory. Relative sensitivities of unexposed and selected generations were then compared by exposing parent, F1 and F2 individuals to zinc in contact filter papers tests. Calculation of effect concentrations from this work indicated differences in sensitivity to zinc for successive generations, with higher toxicity values (LC(50), LC(90), LC(99)) found for the selected worms. The increases in resistance found for F1 and F2 worms were confirmed in a discriminating dose study. In addition to comparing the sensitivities of the parent, F1 and F2 generations for zinc, toxicity tests were also conducted with copper to assess if there was evidence of cross-resistance between the two metals. Results indicated similar increases in resistance to copper to those found for zinc. Mechanisms underlying the increased metal resistance were studied in toxicokinetic experiments. Results indicated no clear trends between the three generations indicating that physiological responses, other than differences in kinetic parameters, are responsible for the increased resistance found in the selected worms.  相似文献   
6.
The effects of the polycyclic aromatic hydrocarbon (PAH) pyrene on earthworms were investigated in contact and soil tests. In addition to measuring toxic effects on survival and reproduction, Ethoxyresorufin-o-deethylase (EROD) activity and catalase activity were also studied as possible biomarkers of toxic stress. The survival data indicated that LC50 values were 0.0068 mg/ml for the contact test, and 283 mg/kg in the soil test. Cocoon production rate was significantly reduced compared to controls at 160, 640 and 2560 mg/kg in the soil test. No EROD activity could be detected in preliminary studies using control and exposed animals from the contact test, so this assay was not used to the soil test. Catalase activity was shown to be significantly lower at 640 mg/kg in the soil test compared to all other treatments and the control. When compared to toxicological data for other soil invertebrates, Lumbricus rubellus has an intermediate sensitivity in respects of survival and a lower sensitivity for reproductive effects, although the soil used in this study had a higher organic content than previous studies, meaning that the sensitivity of this species may be underestimated in comparison to previous published data for other soil invertebrates.  相似文献   
7.
The earthworm Eisenia fetida (Annelida: Oligochaeta) was exposed to a geometric series of concentrations of cadmium, copper, lead and zinc in artificial soil using the OECD recommended protocol. Mortality, growth and cocoon production were measured over 56 days to determine LC50 and EC50 values. No observed effect concentrations (NOECs) were also estimated. Furthermore, the percentage of viable cocoons and number of juveniles emerging per cocoon was recorded. Cocoon production was more sensitive than mortality for all the metals, particularly cadmium and copper for which NOEC reproduction values were an order of magnitude lower than those for NOEC mortality. However, there was no significant effect of metals on the viability of cocoons. The weights of earthworms declined in all treatments (including the controls) during the experiment. This was probably due to the lack of suitable food in the OECD standard soil medium used. It was concluded that future experiments should include animal manure in the test medium. The LC50, EC50 and NOEC values determined in this study were compared with concentrations of metals in soils in the vicinity of a smelting works at Avonmouth, southwest England. The 14-day LC50 for zinc in Eisenia fetida was exceeded in soils covering an area of 75 km2 around the works, compared to 4.2 km2 for copper and 4.7 km2 for lead. Soil values for cadmium did not exceed the LC50 value anywhere in the region. Similar estimates of relative effects on reproduction confirmed that zinc is most likely to be responsible for the absence of earthworms from sites close to the Avonmouth works. However, the OECD standard test overestimated the potential effects of metals on populations, since earthworms can be found as close as 1 km from the smelting works. The discrepancy between test and field observations was probably due to the greater availability of the metals in the artificial soil.  相似文献   
8.
Potential contamination at ex-industrial sites means that, prior to change of use, it will be necessary to quantify the extent of risks to potential receptors. To assess ecological hazards, it is often suggested to use biological assessment to augment chemical analyses. Here we investigate the potential of a commonly recommended bioassay, the earthworm reproduction test, to assess the status of urban contaminated soils. Sample points at all study sites had contaminant concentrations above the Dutch soil criteria Target Values. In some cases, the relevant Intervention Values were exceeded. Earthworm survival at most points was high, but reproduction differed significantly in soil from separate patches on the same site. When the interrelationships between soil parameters and reproduction were studied, it was not possible to create a good model of site soil toxicity based on single or even multiple chemical measurements of the soils. We thus conclude that chemical analysis alone is not sufficient to characterize soil quality and confirms the value of biological assays for risk assessment of potentially contaminated soils.  相似文献   
9.
10.
Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316–323, 2009), Xie et al. (J Hydrodyn 21(1): 108–117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975–3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394–406, 2009; J Hazard Mater 192(3): 940–948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street increases with the rise of the wind velocity at the roof level of the street canyon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号