首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   2篇
社会与环境   1篇
  2022年   1篇
  2014年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Biodegradation of naphthalene by Ralstonia eutropha (also known as Cupriavidus necator) in a packed-bed airlift reactor with net draft tube (PBALR-nd) was studied; the Kissiris pieces were the packing material. The reactor hydrodynamics has been characterized under abiotic conditions and the dependencies of the superficial gas velocity (U G) on the gas holdup (εG), liquid mixing time, and mass transfer coefficient were determined. The improving role of the net draft tube in this small column reactor (height 42 cm, ID 5 cm) was confirmed. The flow regime was described using the εG α U G n expression, and bubbly flow was observed in PBALR-nd at U G < 2.83 cm/s. In the second step of the present work, the kinetics of biodegradation was modeled using the Haldane and Aiba equations. The fitting of the experimental results to the models were done according to the nonlinear least square regression technique. The biokinetic constants (q m, K s, and K i) were estimated and q m as the specific biodegradation rate was equaled to 0.415 and 0.24 mgnaph./mgcell?h for the Haldane and Aiba equations, respectively. The goodness of fit reported as R 2 and root-mean-square error (RMSE) showed the adequate fitness of the Haldane and Aiba models in predicting naphthalene biodegradation kinetics. On the basis of the HPLC results, a hypothetical pathway for the biodegradation was presented.  相似文献   
2.
This study examined the biodegradation of phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor (ICB), operated in a repeated batch recycling mode. The steady biodegradation rate of 23.7 mg/g/h, over a wide range of the initial phenol concentrations up to 1400 mg/L in the ICB, indicated an increased tolerance limit of the Kissiris-immobilized cells towards phenol. Both Haldane and Luong substrate inhibition models were used to describe biodegradation kinetic of free cells system. The Haldane equation gave the following values for the biokinetic parameters: micro(max) = 0.36 h(-1), Ks = 40.48 mg/L, and Ki = 181.9 mg/L. However, according to the Luong model, these parameters were micromax) = 0.23 h(-1), Ks = 24.8 mg/L, Sm = 1018 mg/L, and n = 1.3. By following appropriate operational conditions and use of the ICB, it was found to be possible to extend the efficiency of the highly porous structure of the siliceous mineral Kissiris in cell immobilization. This holds significant promise for pollutant biodegradation issues.  相似文献   
3.
Environment, Development and Sustainability - Several models with a variety of concepts and approaches have been proposed to address different aspects of the Water-Energy-Food (WEF) nexus system....  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号