首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
社会与环境   1篇
灾害及防治   1篇
  2014年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Anthropogenic climate and land-use change are leading to irreversible losses of global biodiversity, upon which ecosystem functioning depends. Since total species' well-being depends on ecosystem goods and services, man must determine how much net primary productivity (NPP) may be appropriated and carbon emitted so as to not adversely impact this and future generations. In 2005, man ought to have only appropriated 9.72 Pg C of NPP, representing a factor 2.50, or 59.93%, reduction in human-appropriated NPP in that year. Concurrently, the carbon cycle would have been balanced with a factor 1.26, or 20.84%, reduction from 7.60 Gt C/year to 5.70 Gt C/year, representing a return to the 1986 levels. This limit is in keeping with the category III stabilization scenario of the Intergovernmental Panel for Climate Change. Projecting population growth to 2030 and its associated basic food requirements, the maximum HANPP remains at 9.74 ± 0.02 Pg C/year. This time-invariant HANPP may only provide for the current global population of 6.51 billion equitably at the current average consumption of 1.49 t C per capita, calling into question the sustainability of developing countries striving for high-consuming country levels of 5.85 t C per capita and its impacts on equitable resource distribution.  相似文献   
2.
As a result of the increase in natural disaster losses, policy‐makers, practitioners, and members of the research community around the world are seeking effective and efficient means of overcoming or minimising them. Although various theoretical constructs are beneficial to understanding the disaster phenomenon and the means of minimising losses, the disaster risk management process becomes less effective if theory and practice are set apart from one another. Consequently, this paper seeks to establish a relationship between two theoretical constructs, ‘disaster risk reduction (DRR)’ and ‘vulnerability reduction’, and to develop a holistic approach to DRR with particular reference to improving its applicability in practical settings. It is based on a literature review and on an overall understanding gained through two case studies of post‐disaster infrastructure reconstruction projects in Sri Lanka and three expert interviews in Sri Lanka and the United Kingdom.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号