首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
环保管理   2篇
综合类   2篇
基础理论   4篇
污染及防治   2篇
社会与环境   1篇
灾害及防治   1篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  1994年   2篇
  1993年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Tourists are particularly vulnerable when natural disasters occur in regions that they are visiting. It is assumed that they lack awareness and understanding of the actions that they need to take in such circumstances. This study examines the responses of tourists in times of disaster, building on empirical data collected through large‐scale surveys conducted in Bali and Yogyakarta, Indonesia, in 2015. Both are important tourist destinations in the country that have suffered major disasters in recent years. The different types of responses to these events are framed using a grid/group analysis stemming from cultural theory. The study resulted in three key findings: (i) current disaster management planning largely follows a single rationale; (ii) tourists are not a homogeneous group, but rather a complex, diverse, and dynamic body of stakeholders; and (iii) the focus of disaster management planning should shift from a single rationale to a polyrational methodology. Disaster managers need to consider, therefore, these different aspects in the context of preparedness.  相似文献   
2.
减少农业甲烷排放的技术选择   总被引:1,自引:1,他引:1  
文章总结了温室气体甲烷的最新研究进展,包括:甲烷对全球变暖的贡献,甲烷的排放机理以及优先研究的领域;估算了我国农业甲烷排放的贡献:中国约占世界人工源甲烷排放量的10.48%,其中农业排放占一半以上;根据实验结果,提出了筛选低排放水稻品种、水分管理、施肥管理、改进饲料、使用添加剂和生长调节剂、改进遗传、促进繁育等减少稻田和反刍家畜甲烷排放的若干技术选择。  相似文献   
3.
For decades, wind erosion has triggered dust and sand storms, buffeting Beijing and areas of northwestern China to the point of being hazardous to human health while rapidly eroding crop and livestock productivity. The EPIC (Environmental Policy Integrated Climate) field-scale simulation model was used to assess long-term effects of improved crop rotations and crop residue management practices on wind erosion in Wuchuan County in Inner Mongolia. Simulation results indicate that preserving crop stalks until land is prepared by zone tillage for the next year's crop in lieu of using them as a source of heating fuel or livestock fodder significantly reduces wind erosion by 60%. At the same time, grain and potato (Solanum tuberosum L.) yields were maintained or improved. Significant reductions in erosion, 35 to 46%, also resulted from delaying stalk removal until late January through late April. Yearly wind erosion was concentrated in April and May, the windiest months. Additionally, the use of alternative crop rotations resulted in differences in wind erosion, largely due to a difference in residue stature and quality and differences in biomass produced. As a result, altering current crop rotation systems by expanding corn (Zea mays L.), wheat (Triticum aestivum L.), and millet [Sorghum bicolor (L.) Moench] and reducing potato and pea (Pisum sativum L.) production significantly reduced simulated wind erosion, thus diminishing the severity of dust and sand storms in northwestern China. Saving and protecting topsoil over time will sustain land productivity and have long-term implications for improving conditions of rural poverty in the region.  相似文献   
4.
Tao F  Yokozawa M  Hayashi Y  Lin E 《Ambio》2003,32(4):295-301
The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socioeconomics.  相似文献   
5.
6.
反刍动物甲烷排放研究进展   总被引:1,自引:0,他引:1  
反刍动物甲烷排放是大气中甲烷的主要排放源之一,本文简述了国内外反刍动物甲烷排放总量研究概况,及甲烷排放研究尚存在的问题和初步结论。  相似文献   
7.
Climate change, water availability and future cereal production in China   总被引:3,自引:0,他引:3  
Climate scenarios from a regional climate model are used to drive crop and water simulation models underpinned by the IPCC A2 and B2 socio-economic development pathways to explore water availability for agriculture in China in the 2020s and 2040s. Various measures of water availability are examined at river basin and provincial scale in relation to agricultural and non-agricultural water demand and current and planned expansions to the area under irrigation. The objectives are to understand the influences of different drivers on future water availability to support China's food production. Hydrological simulations produce moderate to large increases in total water availability in response to increases in future precipitation. Total water demand increases nationally and in most basins, but with a decreasing share for agriculture due primarily to competition from industrial, domestic and municipal sectors. Crop simulations exhibit moderate to large increases in irrigation water demand which is found to be highly sensitive to the characteristics of daily precipitation in the climate scenarios. The impacts of climate change on water availability for agriculture are small compared to the role of socio-economic development.The study identifies significant spatial differences in impacts at the river basin and provincial level. In broad terms water availability for agriculture declines in southern China and remains stable in northern China. The combined impacts of climate change and socio-economic development produce decreases in future irrigation areas, especially the area of irrigated paddy rice. Overall, the results suggest that there will be insufficient water for agriculture in China in the coming decades, due primarily to increases in water demand for non-agricultural uses, which will have significant implications for adaptation strategies and policies for agricultural production and water management.  相似文献   
8.
Predicting soil erosion for alternative land uses   总被引:3,自引:0,他引:3  
The APEX (Agricultural Policy-Environmental eXtender) model developed in the United States was calibrated for northwestern China's conditions. The model was then used to investigate soil erosion effects associated with alternative land uses at the ZFG (Zi-Fang-Gully) watershed in northwestern China. The results indicated that the APEX model could be calibrated reasonably well (+/-15% errors) to fit those areas with >50% slope within the watershed. Factors being considered during calibration include runoff, RUSLE (Revised Universal Soil Loss Equation) slope length and steepness factor, channel capacity flow rate, floodplain saturated hydraulic conductivity, and RUSLE C factor coefficient. No changes were made in the APEX computer code. Predictions suggest that reforestation is the best practice among the eight alternative land uses (the status quo, all grass, all grain, all grazing, all forest, half tree and half grass, 70% tree and 30% grain, and construction of a reservoir) for control of water runoff and soil erosion. Construction of a reservoir is the most effective strategy for controlling sediment yield although it does nothing to control upland erosion. For every 1 Mg of crop yield, 11 Mg of soil were lost during the 30-yr simulation period, suggesting that expanding land use for food production should not be encouraged on the ZFG watershed. Grass species are less effective than trees in controlling runoff and erosion on steep slopes because trees generally have deeper and more stable root systems.  相似文献   
9.
Environmental Science and Pollution Research - Nowadays, many countries in the world have paid attention to the issue of improving the eco-compensation program for their forest ecotourism systems...  相似文献   
10.
Climate warming has prolonged the optimization of crop-growing seasons,shortened actual growth periods,and changed crop-planting boundaries.It also has boosted crop yields in certain regions while compromising crop quality and affected the occurrence of meteorological disasters and pest diseases damage,which has resulted in reduction in grain yield.Crop production systems will evidence more sensitivity to climate change in future;for example,with an increase of 1°C in temperature,the average growth period will be shortened by 17 days for winter wheat and 7-8 days for maize and rice.Of course regional differences will exist.Climate change will threaten crop yield stability and affect crop quality.Vulnerability will be addressed in regard to extreme climatic events,which include reducing exposure and improving adaptive capacity,because the exposure of rain-fed agriculture is greater than that of irrigated agriculture.Therefore,we propose three suggestions to reduce the vulnerability of crop production systems to climate change.First,strengthen the evaluation capacity construction of sensitivity,which includes(1)refining and improving all types of evaluation indicator systems and models;(2)innovating and developing evaluation methods and tools;and(3)combining field observation and case studies,so that(1)the impact of climate change and sensitivity can be assessed scientifically;(2)uncertainty in the study can be identified and reduced;and(3)improved understanding of climate systems and their changes,climate change impact,and sensitivity will be achieved.Second,strengthen adaptive capacity construction for crop production systems,which includes(1)rebuilding existing farmland infrastructure to improve meteorological disaster defences;(2)adjusting agriculture structure and adopting new crop varieties with enhanced resistance;(3)popularizing water-saving technology and dry farming technology;and(4)further researching interdisciplinary theories and methods.Third,strengthen function construction for natural and social s  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号