首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
安全科学   1篇
  2014年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
全尾砂絮凝沉降参数GA-SVM优化预测模型研究   总被引:3,自引:0,他引:3  
为了得到经济、高效的絮凝沉降参数,建立GA_SVM预测模型进行优化选择。在优选过程中,以供砂浓度、絮凝剂单耗和絮凝剂添加浓度作为输入因子,以沉降速度作为综合输出因子,通过室内试验,建立训练、验证样本集;建立支持向量机(SVM)回归预测模型,用训练集对模型进行训练,进而以验证集预测值的均方误差作为适应度函数,通过遗传算法(GA)对SVM模型参数进行优化选择,应用优化得到的SVM模型对絮凝沉降参数进行预测、优化。以湖南某铅锌银矿为例,通过建立的GA_SVM模型对全尾砂絮凝沉降参数进行预测,优选出该矿最佳絮凝沉降参数为:供砂浓度20%-25%,絮凝剂单耗8g/t,添加浓度009%。经实验对比,该模型对絮凝沉降参数预测结果的相对误差能控制在5%左右,精确度较高,可以作为絮凝沉降参数优选的一种新思路  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号