首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
安全科学   2篇
污染及防治   1篇
  2016年   1篇
  2013年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Previous research showed that at certain conditions, close to the flammability range exists a regime where cool flame may develop either due to elevated temperature or it may be initiated by an ignition source. Propagation of the cool flame in a closed test vessel may double the initial pressure. Such pressure increase exceeds recommended ignition criteria for explosion limit determination that are based on 5 or 7% of pressure rise leading to inaccurate classification of the oxidation phenomena, i.e. cool flame propagation may be classified as hot flame propagation.Two mixtures were tested: n-butane-oxygen (extensively) and C1–C2–oxygen (in limited range), which represent a typical composition in ethylene oxide production, at elevated conditions at their upper explosion limits. Flame development was analysed by flame emission spectroscopy and the post-oxidation mixture was analysed by gas chromatography (GC) to characterise the oxidation mechanism of the flame. Additionally explosion pressure rise, flame temperature, and maximum rate of pressure rise were measured. In all experiments with the pressure rise ratio below two the low temperature oxidation mechanism assisted the flame propagation.  相似文献   
2.
The wide application of microalgae in the field of wastewater treatment and bioenergy source has improved research studies in the past years. Microalgae represent a good source of biomass and bio-products which are used in different medical and industrial activities, among them the production of high-valued products and biofuels. The present review focused on greywater treatment through the application of phycoremediation technique with microalgae and presented recent advances in technologies used for harvesting the microalgae biomass. The advantages and disadvantages of each method are discussed. The microbiological aspects of production, harvesting and utilization of microalgae biomass are viewed.  相似文献   
3.
Accurate determination of explosion severity parameters (pmax, (dp/dt)max, and KSt) is essential for dust explosion assessment, identification of mitigation strategy, and design of mitigation measure of proper capacity. The explosion severity parameters are determined according to standard methodology however variety of dust handled and operation circumstances may create practical challenge on the optimal test method and subsequent data interpretation. Two methods are presented: a statistical method, which considers all test results in determination of explosion severity parameters and a method that corrects the results for differences of turbulence intensity. The statistical method also calculates experimental error (uncertainty) that characterises the experimental spread, allows comparison to other dust samples and may define quality determination threshold. The correction method allows to reduce discrepancies between results from 1 m3 vessel and 20-l sphere caused by difference in the turbulence intensity level. Additionally new experimental test method for difficult to inject samples together with its analysis is described. Such method is a versatile tool for explosion interpretation in test cases where different dispersion nozzle is used (various turbulence level in the test chamber) because of either specific test requirements or being “difficult dust sample”.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号