首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
安全科学   4篇
  2012年   1篇
  2010年   2篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A large number of azodicarboxylates and their derivatives are produced and used in the chemical industries. The versatile applications of these azodicarboxylates in research institutes and in the chemical industries for chemical synthesis arouse additional hazards. The intent of this paper is to obtain first knowledge about the structure–response relationship regarding the explosive properties and the thermal hazards of different versatile used azodicarboxylates. The substances are examined with the differential scanning calorimetry (DSC). Furthermore, different laboratory test methods, based on the UN Recommendations on the Transport of Dangerous Goods, are applied to determine the explosive properties of the mentioned substances. On the basis of the obtained results, the known influence of the nitrogen content within the molecule regarding their thermal behaviour could be confirmed. The measured heat of decomposition appeared to be proportional to the nitrogen content within the group of the aliphatic and the aromatic azodicarboxylates. To emphasize this dependency, further investigations should be done. The long term objective of this research is to develop structure–response relationships of the explosive properties and the thermal hazards originating from azodicarboxylates.  相似文献   
2.
Tests according to the UN Recommendations on the Transport of Dangerous Goods for the determination of explosive properties of organic peroxides have been compared with screening criteria for explosivity based on measurements in a closed mini-autoclave (MCPVT). It will be shown that an additional screening test may be helpful but the information obtained from the UN tests are more important to characterise the specific properties of a substance under different conditions.  相似文献   
3.
We present our results on the comparison of two methods for the SADT determination. Both methods, UN test H.1 and UN test H.4 are recommended by the international transport regulations from the UN. But during the last years the applicability of the UN test H.4 has been questioned for solid substances. Therefore, three organic peroxides and one self-reactive substance have been investigated in 5 kg and 20 kg packages as well as in the UN test H.4 in a 500 mL Dewar vessel. The SADT values determined with the different methods match. The UN test H.4 seems to be well suited for solid organic peroxides and self-reactive substances of at least 20 kg or 60 L.  相似文献   
4.
The mass burning rate of pool fires of organic peroxides do not vary appreciably with the pool size as have been observed for the hydrocarbons. Instead the decomposition temperature largely controls the same. The dependence of mass burning rate on the decomposition temperatures namely self-accelerating decomposition temperature (SADT) and extrapolated onset temperature measured by differential scanning calorimetry (DSC) for organic peroxide pool fires are identified and correlations are developed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号