首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
  国内免费   1篇
安全科学   54篇
废物处理   3篇
综合类   3篇
基础理论   5篇
污染及防治   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2013年   11篇
  2012年   9篇
  2011年   6篇
  2010年   16篇
  2009年   6篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  1994年   1篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
Hydroxylamine, NH2OH, thermal decomposition has been responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting the rate of its decomposition are not understood. In this work, isoperibolic calorimetric measurements were performed in a metal reactor, in the temperature range 130–150 °C, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The calorimetric measurements were performed in order to assess the effects that NH2OH concentration, temperature and reactor venting has on NH2OH rate of decomposition. The measurements showed that increased concentration or temperature, results in faster reactions and probably higher pressure generation per mass of reactant, with concentration having a more pronounced effect. However, when both factors work synergistically the result is dramatically worse in terms of reaction rate. The pressure generation is also different, thus indicating that different reaction pathways predominate each time. Venting the produced gases in stages resulted in the highest mass loss of the solution.  相似文献   
2.
3.
4.
Curtain mitigation systems are modeled here since they have experimentally shown their efficiency in reducing the concentration of certain toxic gases within dense gas clouds. Air, water and steam are analyzed in a model as the physical barriers to decrease the gas concentration. The model, developed for a steady-state mitigation process, is based on the mass, energy and momentum conservation laws. Concentration estimations during the dispersion before and after the mitigation are performed with a SLAB type model. A sensitivity analysis for each model is given to detect which variables have bigger effects. A release of chlorine is used as an example and the results are calculated in a prototype developed in Visual C++, where the model is solved using the Runge–Kutta 4th order method. The results include the effects of composition, speed, temperature and height of the releasing point as well as a comparison with CFD simulations. The proposed model is simplified and it cannot reproduce eddy effects but it is fast and robust enough. The model provides a set of equations that can be used in numerical problems where explicit derivatives are required, e.g. optimizations procedures.  相似文献   
5.
Alkylpyridine N-oxides are important intermediates in the pharmaceutical and agrochemicals industries. The N-oxides are produced via the homogeneously catalyzed oxidation of the respective alkylpyridines using a 50% excess of hydrogen peroxide. The competitive hydrogen peroxide decomposition produces oxygen in the flammable environment of alkylpyridines and thus forms a key hazard for this reaction. In this work, the N-oxidation was performed under pressure in the temperature range of 110–125 °C with different catalyst concentrations. It was shown that temperature had an undisputable positive effect on the N-oxidation efficiency. The accurate measurement of the pressure rise due to decomposition was difficult. However, only 5% of the added H2O2 decomposed when stoichiometric quantities were employed, even in the temperature of 110 °C. The N-oxidation was very efficient, even when the lowest concentration of catalyst employed in this study was used.  相似文献   
6.
Accidental release of pressurized high flash point heat transfer fluids can result in fire and explosion hazard scenarios in the process industry. An experimental investigation on ignition of aerosols of a heat transfer fluid is carried out, and characterization of aerosol and its ignition process by non-intrusive laser diffraction technique is reported. Propagation speed of the aerosol combustion flame front as analyzed from the laser diffraction measurement agrees with high-speed visual camera observation. Flammability of the aerosol, which is based on the chances of the global flame appearance in the aerosol, is mainly controlled by aerosol droplet size and the droplet volume concentration.  相似文献   
7.
In this work, a novel approach is proposed for expressing the risks of process plants consisting of a large number of scenarios, in the form of a risk metrics of leading indicators to prevent potential high profile industry accidents. The methodology includes: 1) risk estimation of a portfolio by CPQRA (or QRA), 2) monetization of the tangible risks with the inclusion of the lost time of production, 3) estimation of the maximum portfolio loss using Value-at-Risk approach, 4) inclusion of intangible risks using FN-curve and, 5) generation of F$-curve of tangible risks. The proposed methodology can particularly help in understanding the stakes at risk by performing the overall cost-benefit analysis, for identifying the most risky scenarios and identifying critical equipments to enable better risk-informed decision making in order to adopt appropriate risk mitigation measures. This work establishes the groundwork for developing measures for understanding and comparing the large number of risk values derived from QRA studies for large portfolios. It will aid in less subjective decision making as it enables the decision maker to choose the most preferred portfolio option among alternatives. Decisions made with the accurate understanding of the consequences of risks can significantly reduce potential work-related fatalities, property losses and save millions of dollars.  相似文献   
8.
Uncertainties of input data as well as of simulation models used in process safety analysis (PSA) are key issues in the application of risk analysis results. Mostly, it is connected with an incomplete and uncertain identification of representative accident scenario (RAS) and other vague and ambiguous information required for the assessment of particular elements of risk, especially for determination of frequency as well as severity of the consequences of RAS. The authors discuss and present the sources and types of uncertainties encountered in PSA and also methods to deal with them. There are different approaches to improve such analysis including sensitivity analysis, expert method, statistics and fuzzy logic. Statistical approach uses probability distribution of the input data and fuzzy logic approach uses fuzzy sets. This paper undertakes the fuzzy approach and presents a proposal for fuzzy risk assessment. It consists of a combination of traditional part, where methods within the process hazard analysis (PHA) are used, and “fuzzy part”, applied quantitatively, where fuzzy logic system (FLS) is involved. It concerns frequency, severity of the consequences of RAS and risk evaluation. In addition, a new element called risk correction index (RCI) is introduced to take into account uncertainty concerned with the identification of RAS. The preliminary tests confirmed that the final results on risk index are more precisely and realistically determined.  相似文献   
9.
An approach to reduce the probability of producing a domino effect in process industry is developed in this work. It is assumed that optimal layouts should include appropriate analysis to reduce risk during the process design stage. The model developed for this approach combines the estimation of probability of damage due to overpressure, proposed by Mingguang and Juncheng (2008), and escalation threshold values defined by Cozzani, Gubinelli, and Salzano (2006). These equations are combined with other typical layout constraints as well as bounding the probability constraint, which has resulted in a highly non-linear MINLP problem. Solving a case study used by other authors provides evidence for reliability of the developed approach. In this way, layouts are designed to reduce the escalation probability yielding safe distributions.  相似文献   
10.
Concerns over public safety and security of a potential liquefied natural gas (LNG) spill have promoted the need for continued improvement of safety measures for LNG facilities. The mitigation techniques have been recognized as one of the areas that require further investigation to determine the public safety impact of an LNG spill. Forced mitigation of LNG vapors using a water curtain system has been proven to be effective in reducing the vapor concentration by enhancing the dispersion. Currently, no engineering criteria for designing an effective water curtain system are available, mainly due to a lack of understanding of the complex droplet–vapor interaction. This work applies computational fluid dynamics (CFD) modeling to evaluate various key design parameters involved in the LNG forced mitigation using an upwards-oriented full-cone water spray. An LNG forced dispersion model based on a Eulerian–Lagrangian approach was applied to solve the physical interactions of the droplet–vapor system by taking into account the various effects of the droplets (discrete phase) on the air–vapor mixture (continuous phase). The effects of different droplet sizes, droplet temperatures, air entrainment rates, and installation configurations of water spray applications on LNG vapor behavior are investigated. Finally, the potential of applying CFD modeling in providing guidance for setting up the design criteria for an effective forced mitigation system as an integrated safety element for LNG facilities is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号