首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
废物处理   1篇
环保管理   1篇
污染及防治   1篇
社会与环境   1篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Efficient removal of chlorine from PVC achieved by two-stage heat-treatment (280 and 410 degrees C) provided chlorine-free isotropic pitch containing additive. The pitch was stabilized and carbonized into porous carbons with surface areas of approximately 300 m2/g. Resultant porous carbons showed three pore structures of supermicropore, micropore and mesopore. The generation of CO2 from the decomposition of the CaCO3 additive in waste PVC is responsible for the development of porous structures. The surface area of the carbonized product increased after the removal of CaO.  相似文献   
2.
Speciation of copper-humic substances (HS) in the electrokinetic remediation (EKR) of a contaminated soil was studied by in situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. The least-square fits of the XANES spectra suggested that the main Cu species in the contaminated soil were Cu-HS (50%), CuCO(3) (28%), Cu(2)O (11%), and CuO (11%). The Cu-HS in the contaminated soil possessed equatorial and axial Cu-O bond distances of 1.94 and 2.17 A with coordination numbers (CNs) of 3.6 and 1.4, respectively. In the EKR process, the axial Cu-O bond distance in the Cu-HS complexes was increased by 0.15 A, which might be due to a ligand exchange of the Cu-HS with H(2)O molecules in the electrolyte. After 180 min of EKR, about 50% of the Cu-HS complexes (or 24% of total Cu) in the soil were dissolved and formed [Cu(H(2)O)(6)](2+) in the electrolyte, 71% (or 17% of total Cu in the soil) of which were migrated to the cathode under the electric field (5 V/cm). This work exemplifies the use of in situ EXAFS and XANES spectroscopies for speciation studies of Cu chelated with HS in the contaminated soil during EKR.  相似文献   
3.
Utilization of urban sewage sludge: Chinese perspectives   总被引:3,自引:0,他引:3  

Purpose

Urbanization and industrialization in China has resulted in a dramatic increase in the volume of wastewater and sewage sludge produced from wastewater treatment plants. Problems associated with sewage sludge have attracted increasing attention from the public and urban planners. How to manage sludge in an economically and environmentally acceptable manner is one of the critical issues that modern societies are facing.

Methods

Sludge treatment systems consist of thickening, dewatering, and several different alternative main treatments (anaerobic digestion, aerobic digestion, drying, composting, and incineration). Agricultural application, landfill, and incineration are the principal disposal methods for sewage sludge in China. However, sewage sludge disposal in the future should focus on resource recovery, reducing environmental impacts and saving economic costs.

Results

The reuse of biosolids in all scenarios can be environmentally beneficial and cost-effective. Anaerobic digestion followed by land application is the preferable options due to low economic and energy costs and material reuse.

Conclusion

It is necessary to formulate a standard suitable for the utilization of sewage sludge in China.  相似文献   
4.
Caesium-137 and (239,240)PU were analysed in the water column along the Algerian coast. The (137)Cs activity concentration in surface water increased from the west to the east from 1.6 to 3.3 mBq L(-1), documenting a presence of Modified Atlantic Water (MAW) in the region. Higher concentrations observed in deep waters may be due to an intrusion of Levantine Intermediate Water (LIW), which has been carrying higher levels of (137)Cs from Chernobyl accident. The (239,240)Pu sub-surface concentration peaked at about 250 m water depth as a result of biogeochemical processes in the water column. The observed (239,240)Pu/(137)Cs activity ratio at the surface (0.003) was significantly lower than that in global fallout (0.04). This decrease exceeds that expected from radioactive decay of (137)Cs, and confirms that Pu due to its adsorption on sinking particles is more effectively removed from surface layers than is (137)Cs. An increase of the (239,240)Pu/(137)Cs activity ratio with depth suggests that (239,240)Pu, similarly as (137)Cs, should be also transported by advection to maintain the observed ratios in deep waters. An intrusion of LIW may enhance therefore both the (137)Cs and (239,240)Pu concentrations in deep waters. The average (238)Pu/(239+240)Pu activity ratio in seawater was 0.03+/-0.02, confirming a global fallout origin of Pu in the Algerian Basin. Caesium-137 and (239,240)Pu inventories in the water column were estimated to be from 2.7+/-0.5 kBq m(-2) to 3.8+/-0.7 kBq m(-2), and from 13.8+/-2.6 Bq m(-2) to 41+/-7B qm(-2), respectively. The (137)Cs massic activities in surface sediment were almost constant, the average activity was 9.0+/-0.8 Bq kg(-1). Sedimentation rates obtained using the (210)Pb method were from 0.1 to 0.7 cm y(-1), and resulting penetration depths of (137)Cs in the sediment cores were from 15 to over 40 cm. The (137)Cs peaks found in the sediment cores were associated with the Chernobyl accident (1986) and global fallout (1964). The (137)Cs inventories in the sediment were increasing from the west (180 Bq m(-2)) to the east (350 Bq m(-2)).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号