首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
废物处理   2篇
环保管理   1篇
综合类   3篇
基础理论   3篇
污染及防治   9篇
  2022年   2篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
排序方式: 共有18条查询结果,搜索用时 46 毫秒
1.
Azo dyes are among the oldest man-made chemicals and they are still widely used in the textile, printing and the food industries.About 10% - 15% of the total dyes used in the industry is released into the environment during the manufacturing and usage. Some dyes and some of their N-substituted aromatic bio-transformation products are toxic and/or carcinogenic and therefore these dyes are considered to beenvironmental pollutants and health hazards. These azo dyes are degraded by physico-chemical and biological methods. Of these, biological methods are considered to be the most economical and efficient. In this work, attempts were made to degrade these dyes aerobically. Theorganisms which were efficient in degrading the following azo dyes-Red RB, Remazol Red, Remazol Blue, Remazol Violet, Remazol Yellow,Golden Yellow, Remazol Orange, Remazol Black- were isolated from three different sources viz., wastewater treatment plant, paper milleffluent treatment plant and tannery was tewater treatment plant. The efficiency of azo dye degradation by mixed cultures from each source wasanalyzed. It was found that mixed cultures from tannery treatment plant worked efficiently in decolorizing Remazol Red, Remazol Orange,Remazol Blue and Remazol Violet, while mixed cultures from the paper mill effluent worked efficiently in decolorizing Red RB, Golden Yellow and Remazol Yellow. The mixed cultures from wastewater treatment plant efficiently decolorized Remazol Black.  相似文献   
2.
Babel S  Kurniawan TA 《Chemosphere》2004,54(7):951-967
In this study, the technical feasibility of coconut shell charcoal (CSC) and commercial activated carbon (CAC) for Cr(VI) removal is investigated in batch studies using synthetic electroplating wastewater. Both granular adsorbents are made up of coconut shell (Cocos nucifera L.), an agricultural waste from local coconut industries. Surface modifications of CSC and CAC with chitosan and/or oxidizing agents, such as sulfuric acid and nitric acid, respectively, are also conducted to improve removal performance. The results of their Cr removal performances are statistically compared. It is evident that adsorbents chemically modified with an oxidizing agent demonstrate better Cr(VI) removal capabilities than as-received adsorbents in terms of adsorption rate. Both CSC and CAC, which have been oxidized with nitric acid, have higher Cr adsorption capacities (CSC: 10.88, CAC: 15.47 mg g(-1)) than those oxidized with sulfuric acid (CSC: 4.05, CAC: 8.94 mg g(-1)) and non-treated CSC coated with chitosan (CSCCC: 3.65 mg g(-1)), respectively, suggesting that surface modification of a carbon adsorbent with a strong oxidizing agent generates more adsorption sites on their solid surface for metal adsorption.  相似文献   
3.
Dye wastewater is a major source of toxic aromatic amines released into the environment. Semiconductor photocatalysis is a clean, solar-driven process for the treatment of dye wastewater. To enhance applicability of semiconductor photocatalysis, the catalyst used should be visible light active. Here we report a facile synthesis of a highly visible-light-active nitrogen-doped tungsten oxide, N-WO3, by thermal decomposition of peroxotungstic acid–urea complex. The structure and properties of N-WO3 are characterized by X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy. The photodegradation of amaranth catalyzed by N-WO3 is evaluated in a batch system under visible and ultraviolet A (UVA) light. Our results show successful doping of N in both interstitial and substitutional sites and the presence of N2-like species. The N doping surprisingly expands the usable portion of the solar spectrum up to the near-infrared region and enhances the photocatalytic activity. At typical experimental conditions such as 25 mg/L of amaranth, 1 g/L of N-WO3, and pH 7, 100 % degradation of amaranth is achieved within 2 h under both visible and UVA light. The photocatalytic activity of N-WO3 is maintained in repeated cycles, indicating its exceptional photostability. To the best of our knowledge, this is the first time that a reusable, highly visible-light-active N-WO3 can be obtained through thermal decomposition of peroxotungstic acid–urea complex.  相似文献   
4.
This paper presents a method to facilitate the decision-making process in selecting sustainable floors (elements) for buildings in Sri Lanka, taking into consideration environmental, economic and social assessments of materials used for these elements. Two types of elements are selected for this study, namely, tile and vinyl tile. Environmental burdens associated with these elements are analyzed in terms of embodied energy and environmental impacts that are relevant to Sri Lanka, such as global warming, acidification and nutrient enrichment. Economic analysis is based on market prices and affordability of materials. Factors considered for the social analysis are thermal comfort, good interior (aesthetics), ability to construct fast, strength and durability. It was found that tile elements are superior to vinyl tile elements on environmental scores if processes of complete life cycle of these elements are taken into account. On social score also, tile elements (104.8) are better than vinyl tile elements (51.15). But on economic score, vinyl tile elements are better. These scores are presented in a matrix which will help in selecting sustainable floor coverings for buildings.  相似文献   
5.
There is a dearth of information regarding the changes in heart muscle metabolites induced by pesticides. In the present study, the gobiid fish, Glossogobius giuris, was exposed to sub lethal concentrations of (0.05, 0.25 and 0.5 ppm) organophosphorus pesticide, malathion for short duration (24 to 96 hr). The cardiac muscles showed maximum depletion of glycogen and cholesterol content during 72 and 96 hr after treatment with 0.5 ppm malathion. Whereas a slight fluctuation of protein and glycogen content was observed in low concentration (0.05 ppm) of malathion. The levels of protein showed a significant decrease at high concentration (0.5 ppm) when treated for longer duration (96 hr). The present study reports metabolic dysfunction in response to malathion toxicity in the fish.  相似文献   
6.
Environmental Science and Pollution Research - Assessment of life history strategies of economically important small indigenous fishes (SIF) which are rich in nutritive values is essential and...  相似文献   
7.
Journal of Material Cycles and Waste Management - In Sri Lanka, the management of the organic fraction of municipal solid waste (OFMSW) is a challenge. Composting is an environmentally and...  相似文献   
8.
Heavy metal removal from contaminated sludge for land application: a review   总被引:17,自引:0,他引:17  
In recent years, various methods for heavy metal removal from sewage sludge have been extensively studied in order to minimize the prospective health risks of sludge during land application. In this paper, a comparative review and critical analysis of the application of chemical extraction, bioleaching, electroreclamation, and supercritical fluid extraction (SFE), in removing heavy metals from contaminated sludges is presented. Moreover, speciation studies, which can indicate ease of leachability of the different forms of heavy metals in sludge, are also presented. Experimental studies revealed a broad range in metal extraction efficiencies of the different extraction technologies. Acid treatment seemed to effectively remove Cd, attaining as much as 100% removal for some studies, as compared to bioleaching. SFE also gave higher removal efficiency than bioleaching. Cr, Pb and Ni seemed to be also effectively removed by the acid treatment. For the removal of Cu, Mn and Zn, the bioleaching process seemed to be appropriate with maximum removal efficiencies of 91%, 93% and 96% for the three metals, respectively, and as high as 64% minimum removal efficiency for Zn. The SFE process also gave good results for Cu, Mn and Zn removal. Electroreclamation exhibited better removal efficiency for Mn, but is still inferior to acid treatment and bioleaching processes. For chemical extraction, because of the adverse impacts that can result from the use of inorganic acids and complexing agents, interest can be directed more toward utilizing organic acids as extracting agents because of their biodegradability and capability to remove metals at mildly acidic condition, hence requiring less acid. The bioleaching process, although it seems to give a higher yield of metal extraction with lower chemical cost than chemical extraction, may be limited by the inability of the system to cope with the natural environmental conditions, requires strict monitoring of aeration rate and temperature and has applicability to only low sludge solids concentration. A full-scale study would be useful to better assess the efficiency of the process. The electroreclamation technology is limited by its relatively higher energy consumption and limited applicability to sludge. The SFE method, on the other hand, is limited by the complexity of the process and the cost of ligands suitable for effective metal extraction. Both of these technologies are still in their early stage of application and hence there is a need for further basic and applied studies. Finally, the common advantage for almost all treatment technologies studied is that the extraction efficiencies for some metals are high enough to remove metals from sludge to levels suitable for land application.  相似文献   
9.
In this study, advanced oxidation process utilizing Fenton's reaction was investigated for the decolorization and degradation of two commercial dyes viz., Red M5B, Blue MR and H-acid, a dye intermediate used in chemical industries for the synthesis of direct, reactive and azo dyes. Effect of Fe2 +, H2O2, pH, and contact time on the degradation of the dyes was studied. Maximum color and COD removal was obtained for Red MSB, H-acid and Blue MR at 10-25 mg/l of Fe2+ dose and 400-500 mg/l of H2O2 dose at pH 3.0. The initial oxidation reaction was found to fit into first order rate kinetics and the rate of oxidation of H-acid was higher than the other dyes. Release of chloride and sulfate from the Fenton's treated Red M5B dye and sulfate from H-acid and Blue MR indicates that the dye degradation proceeds through cleavage of the substituent group.  相似文献   
10.
Abstract

Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号