首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
废物处理   5篇
环保管理   2篇
综合类   4篇
基础理论   1篇
污染及防治   13篇
评价与监测   1篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1933年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Weathering rates of base cations are crucial in critical load calculations and assessments of sustainable forestry. The weathering rate on a single site with detailed geological data can be modelled using the PROFILE model. For environmental assessments on a regional scale, the weathering rates for sites are scaled into regional maps. The step from sites to regional level requires focus on the spatial variation of weathering rates. In this paper, a method is presented by which weathering rates are calculated for 25589 Swedish sites with total elemental analysis for the soil. Based on a part of the results, a methodology for creating area covering maps by geostatistical analysis and kriging is described. A normative reconstruction model was used to transform total elemental analysis to mineralogy. Information from the Swedish Forest Inventory database and other databases were used to derive texture and other important information for the sites, e.g. climate, deposition and vegetation data. The calculated weathering rates show a regional pattern that indicates possibilities for interpolation of data in large parts of Sweden. Geostatistical analysis of an area in southern Sweden shows different properties for different base cations. Kriging was performed for potassium to demonstrate the method. It was concluded that different base cations and different regions have to be analysed separately, in order to optimise the kriging method.  相似文献   
2.
The ForSAFE model, designed for modelling biogeochemical cycles (water, acidity, base cation, nitrogen and carbon) in terrestrial ecosystems, was modified with a vegetation response module (VEG), incorporating the effects of: nitrogen pollution, acidification, soil moisture, temperature, wind chill exposure, light and shading by trees, grazing by animals, competition between plants, above ground for light and below ground for water and nutrients. The model calculates the response of number ground vegetation plant groups. The integrated model was tested and validated at integrated level II forest monitoring sites across Sweden, four have been shown here, and used to assess the effect of acidification and nitrogen pollution in relation to factors such as climate change, forest management and changing grazing pressure. The response functions have been derived from single-factor experiments and integrated through the model structure for use on whole systems. The tests with the model suggest that the ground vegetation composition is reasonably well predicted, that much research remains before the model is fully tested and operational, and that the model may serve as a tool for assessing impacts of climate change, acid rain and forest management on plant biodiversity in forested areas.  相似文献   
3.
The multi-layer dynamic model SAFE was applied to the forested catchment Istebna (Southern Poland), to study recovery from acidification. Environmental pollution in the area has been historically high. The model uses data from an intensive monitoring plot established in 1999 in a spruce stand, which was planted in 1880. Observations showed that the soil was depleted of base cations. The measured base saturation in 1999 was between 5 and 8% in the different soil layers. Model predictions assuming full implementation of the UNECE 1999 Gothenburg Protocol and present day base cation deposition show that the base saturation will slowly increase to 20% by 2100. Despite large emission reductions, Istebna still suffers from the very high loads of acidifying input during the past decades. Soil recovery depends on future emissions especially on base cation deposition. The recovery will be even slower if the base cation deposition decreases further.  相似文献   
4.
The water chemistry of 20 municipal water treatment plants in southern Sweden, representing various bedrock situations, and water qualities, were investigated. Four water samples, raw and treated, were collected from each plant and analyzed by predominantly ICP-OES and ICP-MS at four occasions from June to December, 2001. The concentrations of Ca, Mg, K, Na, HCO3 and a number of micronutrients, varied considerably in treated waters from the studied plants (ranges; Ca: 9.1–53.7 mg L−1, Mg: 1.4–10.9 mg L−1, K: 1.1–4.8 mg L−1, Na; 5.4–75.6 mg L−1, HCO3: 27–217 mg L−1). The elimination of Fe and Mn from raw water was efficient in all treatments investigated, giving concentrations in treated waters below the detection limits at some plants. Softening filters gave waters with Ca-concentrations comparable to the softest waters in this study. Adjustment of pH by use of chemicals like lye, soda or lime, modified the consumer water composition significantly, besides raising the pH. It was estimated that drinking water contributed to approximately 2.2–13% of the daily Ca uptake, if the gastrointestinal uptake efficiency from food and water was estimated to be around 50%. The corresponding figures for Mg was 1.0–7% and for F 0–59%. None of the studied elements showed any significant time trends in raw or treated waters during the follow-up period. The concentrations of potentially toxic metals such as Al, Pb and U were low and did not indicate risks for adverse health effects (ranges; Al: 0.5–2.3 μg L−1, Pb: 0–0.3 μg L−1, U: 0.2.5 μg L−1).  相似文献   
5.
Modeling recovery of Swedish ecosystems from acidification   总被引:2,自引:0,他引:2  
Dynamic models complement existing time series of observations and static critical load calculations by simulating past and future development of chemistry in forest and lake ecosystems. They are used for dynamic assessment of the acidification and to produce target load functions, that describe what combinations of nitrogen and sulfur emission reductions are needed to achieve a chemical or biological criterion in a given target year. The Swedish approach has been to apply the dynamic acidification models MAGIC, to 133 lakes unaffected by agriculture and SAFE, to 645 productive forest sites. While the long-term goal is to protect 95% of the area, implementation of the Gothenburg protocol will protect approximately 75% of forest soils in the long term. After 2030, recovery will be very slow and involve only a limited geographical area. If there had been no emission reductions after 1980, 87% of the forest area would have unwanted soil status in the long term. In 1990, approximately 17% of all Swedish lakes unaffected by agriculture received an acidifying deposition above critical load. This fraction will decrease to 10% in 2010 after implementation of the Gothenburg protocol. The acidified lakes of Sweden will recover faster than the soils. According to the MAGIC model the median pre-industrial ANC of 107 microeq L(-1) in acid sensitive lakes decreased to about 60 microeq L(-1) at the peak of the acidification (1975-1990) and increases to 80 microeq L(-1) by 2010. Further increases were small, only 2 microeq L(-1) between 2010 and 2040. Protecting 95% of the lakes will require further emission reductions below the Gothenburg protocol levels. More than 7000 lakes are limed regularly in Sweden and it is unlikely that this practice can be discontinued in the near future without adverse effects on lake chemistry and biology.  相似文献   
6.
The critical loads to streams, steady-state stream chemistry and catchment chemical weathering rate in 73 catchments has been determined in the state of Maryland, USA. It was calculated with the PROFILE model from chemical limits for biological indicators, soil mineralogy, soil texture, annual average temperature, average soil moisture, net long-term uptake of base cations and nitrogen to the vegetation, annual precipitation and runoff and deposition of sulphur and nitrogen precursors of acid deposition. The results show a full range of critical loads from very low values in the sensitive catchments of western Maryland and the Coastal Plain on the Chesapeake Bay, to insensitive catchments in the Fredrick Valley and Ridge and the Piedmont plain. The critical loads will be used as an input to an integrated regional assessment of the quantitative sensitivity of streams to acid rain, and the assessment of regional stream alkalinity response to different abatement strategies. The mapping of steady-state stream chemistry indicates that streams in Maryland are still acidfying under the present deposition load. Land-use seems to play an important role in maintaining neutral pH in many of the streams of Maryland.  相似文献   
7.
Halogenated flame retardants have a high sorption affinity to particles, making soils and sediments important sinks. Here, three of the most commonly used flame retardants have been tested for sub-lethal toxicity towards soil nitrifying bacteria, a terrestrial plant (seed emergence and growth of the red clover, Trifolium pratense), and a soil invertebrate (survival and reproduction of Enchytraeus crypticus). Tetrabromobisphenol A (TBBPA) was quite toxic to enchytraeids, with significant effects on reproduction detected already at the 10 mgkg(-1) exposure level (EC(10)=2.7 mgkg(-1)). In contrast, decabromodiphenyl ether (DeBDE) was not toxic at all, and short-chain chloroparaffins (CP(10-13)) only affected soil nitrifying bacteria at the highest test concentration (EC(10)=570 mgkg(-1)). Exposure concentrations were verified by chemical analysis for TBBPA and DeBDE, but not for CP(10-13), as a reliable method was not available. Based on the generated data, a PNEC for soil organisms can be estimated at 0.3 mgkg(-1) for TBBPA and 57 mgkg(-1) for short-chain chloroparaffins. No PNEC could be estimated for DeBDE. Measurements of TBBPA in soil are not available, but measured concentrations in Swedish sludge are all lower than the estimated threshold value for biological effects in soil.  相似文献   
8.
There is a growing need to understand how existing concepts and tools for sustainability relate to each other and to a robust, trans-disciplinary systems perspective for sustainability. As a response, a group of scientists, including some of the authors, have developed a framework based on backcasting from sustainability principles over the last 20 years – the Framework for Strategic Sustainable Development (FSSD), also known as The Natural Step Framework. The intent of this study is to scrutinize the existing framework as regards its social dimension. The study demonstrates dichotomies and lack of robustness and proposes a way forward to make the social dimension of the FSSD more cohesive as well as operational.  相似文献   
9.
A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate.  相似文献   
10.
通过把全面的农田试验和矿质风化释放养分以及微量元素循环具体研究结合起来,用一个系统分析方法来评价农场尺度上的养分和微量元素可持续性.为了比较有机和常规农业管理方式,在瑞典北部的Ojebyn奶牛场进行了一个包括磷、钾和锌在内的农场尺度上的实例研究.通过结合不同的元素平衡法(农场总体尺度、畜舍尺度和农田尺度)以及进一步把这些方法应用到FARMFLOw模型,我们能够把子系统内质量流和库结合起来并建立子系统之间联系,来进行农场尺度上的预测.研究发现农场内部的元素流动大,而且农场有内部源(锌)和损失项(钾).在Ojebyn奶牛场形成并得到验证的方法是很有前途的,认为可以应用到任何农场.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号