首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  国内免费   2篇
废物处理   19篇
环保管理   1篇
综合类   2篇
基础理论   3篇
污染及防治   6篇
评价与监测   1篇
社会与环境   4篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2017年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1982年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
To make a proper evaluation of gas component movement inside a landfill site, it is important to investigate the different parameters related to gas flow. In this work gas-filled porosity, intrinsic permeability, tortuosity and equivalent pore radius were determined for various packed wastes, such as incineration ash, shredded bulky waste and shredded incombustible waste. These parameters were measured/inferred for samples packed in a column and exposed to a controlled gas flow. The effect of waste conditions, especially the moisture content, on these parameters was also investigated. The intrinsic permeability of such packed wastes was generally in the order of 10(-10) to 10(-9) m2, except for some ash that was one to two orders lower. The tortuosity of waste layer was greater than that of a particulate material and ranged between 2 and 10. The equivalent pore radius was generally in the order of 10(-4) m, which means that gas diffusion is still ordinary in such packed waste layer. The obtained results will be utilized when simulating gas flow inside a landfill site for biogas extraction or site aeration.  相似文献   
2.
We estimated global future industrial water withdrawal (IWW) by considering socioeconomic driving forces, climate mitigation, and technological improvements, and by using the output of the Asia–Pacific Integrated Model/Computable General Equilibrium (AIM/CGE) model. We carried out this estimation in three steps. First, we developed a sector- and region-specific regression model for IWW. The model utilized and analyzed cross-country panel data using historical statistics of IWW for 10 sectors and 42 countries. Second, we estimated historical IWW by applying a regression model. Third, we projected future IWW from the output of AIM/CGE. For future projections, we considered and included multiple socioeconomic assumptions, namely different shared socioeconomic pathways (SSPs) with and without climate mitigation policy. In all of the baseline scenarios, IWW was projected to increase throughout the twenty-first century, but growth through the latter half of the century is likely to be modest mainly due to the effects of decreased water use intensity. The projections for global total IWW ranged from 461 to 1,560 km3/year in 2050 and from 196 to 1,463 km3/year in 2100. The effects of climate mitigation on IWW were both negative and positive, depending on the SSPs. We attributed differences among scenarios to the balance between the choices of carbon capture and storage (CCS) and renewable energy. A smaller share of CCS was accompanied by a larger share of non-thermal renewable energy, which requires a smaller amount of water withdrawal per unit of energy production. Renewable energy is, therefore, less water intensive than thermal power with CCS with regard to decarbonizing the power system.  相似文献   
3.
The mathematical formulations in a one-dimensional compartment model of the biodegradation of organic landfill components are described. The model is designed to switch between anaerobic and aerobic conditions, depending on the local oxygen concentration. The model also includes the effect of environmental factors, such as moisture content, pH, and temperature, on reaction rates. The model includes not only biodegradation processes for carbon compounds (acetate, CO2, CH4), but also for nitrogen compounds involved in nitrification and denitrification due to their significance in landfills. Two example runs to simulate anaerobic and aerobic waste were conducted for a single landfill unit cell by changing the organic content and diffusion coefficient.  相似文献   
4.
Hydrothermal treatments using subcritical water (HTSW) such as that at 234 °C and 3 MPa (LT condition) and 295 °C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources.While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char.Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing.From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.  相似文献   
5.
An experimental study of the behavior of endocrine-disrupting chemicals (EDCs) in leachate treatment processes (aeration, coagulation and sedimentation, activated carbon adsorption, and advanced oxidation) was conducted and removal efficiencies were evaluated. Among target EDCs, concentrations of BPA (1800 times), DBP (10 times), BBP (40 times), and DEHP (30 times) in leachate are more than ten times higher than those in surface water. BPA, DBP, and BBP can be treated by aeration and DEHP, by advanced oxidation processes. BPA could not be effectively removed by coagulation and sedimentation because most of BPA partitioned in the supernatant. DEHP could hardly be treated by aeration. The removal ratios of DEHP were approximately 50–70% if the generated sediment was removed completely. The removal ratios of DEHP in leachate of 100 m3/d with 100 kg of activated carbon were 50–70%, assuming a complete mixing model. The concentration of DEHP was decreased to below one-tenth in 120 min by advanced oxidation processes.  相似文献   
6.
Here we propose a method to quantitatively assess and examine Global No Net Loss (GNNL) of forest biodiversity on a global scale. The method produces a GNNL index of existing forest and enables future predictions of forest loss under different assumptions. The method tests the feasibility of the GNNL index and enables discussion of policy for future global scale sustainable forest management up to 2050. The GNNL index was estimated from an equation including forest areas per country per forest type (primary forest, secondary forest and plantation forest), diversity of forest ecosystem, and species density. Estimates derived from historical data revealed an approximate 7% reduction in GNNL index between 1990 and 2005. Predictions of the GNNL index until 2050 emphasize the importance of regenerating large portions of forests felled for agricultural land (or other uses) with secondary forests.  相似文献   
7.
A simulation study was carried out to investigate simultaneously the effects of eco-physiological parameters on competitive asymmetry, self-thinning, stand biomass and NPP in a temperate forest using an atmosphere–vegetation dynamics interactive model (MINoSGI). In this study, we selected three eco-physiological relevant parameters as foliage profiles (i.e. vertical distribution of leaf area density) of individual trees (distribution pattern is described by the parameter η), biomass allocation pattern in individual tree growth (χ) and the maximum carboxylation velocity (Vmax). The position of the maximal leaf area density shifts upward in the canopy with increasing η. For scenarios with η < 4 (foliage concentrated in the lowest canopy layer) or η > 12 (foliage concentrated in the uppermost canopy layer), a low degree of competitive asymmetry was produced. These scenarios resulted in the survival of subordinate trees due to a brighter lower canopy environment when η < 4 or the generation of spatially separated foliage profiles between dominant and subordinate trees when η > 12. In contrast, competition between trees was most asymmetric when 4 ≤ η ≤ 12 (vertically widespread foliage profile in the canopy), especially when η = 8. In such cases, vertically widespread foliage of dominant trees lowered the opportunity of light acquisition for subordinate trees and reduced their carbon gain. The resulting reduction in carbon gain of subordinate trees yielded a higher degree of competitive asymmetry and ultimately higher mortality of subordinate trees. It was also shown that 4 ≤ η ≤ 12 generated higher self-thinning speed, smaller accumulated NPP, litter-fall and potential stand biomass as compared with the scenarios with η < 4 or η > 12. In contrast, our simulation revealed small effects of χ or Vmax on the above-mentioned variables as compared with those of η. In particular, it is notable that greater Vmax would not produce greater potential stand biomass and accumulated NPP although it has been thought that physiological parameters relevant to photosynthesis such as Vmax influence dynamic changes in forest stand biomass and NPP (e.g. the greater the Vmax, the greater the NPP). Overall, it is suggested that foliage profiles rather than biomass allocation or maximum carboxylation velocity greatly govern forest dynamics, stand biomass, NPP and litter-fall.  相似文献   
8.
The personal assessments of the current and expected future state of the environment by 3232 community respondents in 18 nations were investigated at the local, national, and global spatial levels. These assessments were compared to a ranking of each country's environmental quality by an expert panel. Temporal pessimism (“things will get worse”) was found in the assessments at all three spatial levels. Spatial optimism bias (“things are better here than there”) was found in the assessments of current environmental conditions in 15 of 18 countries, but not in the assessments of the future. All countries except one exhibited temporal pessimism, but significant differences between them were common. Evaluations of current environmental conditions also differed by country. Citizens' assessments of current conditions, and the degree of comparative optimism, were strongly correlated with the expert panel's assessments of national environmental quality. Aside from the value of understanding global trends in environmental assessments, the results have important implications for environmental policy and risk management strategies.  相似文献   
9.
10.
Total diet study (TDS) samples of 14 food groups from 16 locations in Japan, collected in 1999 and 2000, were analyzed for polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dioxin-like PCBs) to estimate the update of daily intake of these contaminants from food. The mean daily intake of toxic equivalency (TEQ) for an adult weighing 50 kg, calculated at non-detected isomer concentrations equal to zero (ND=0), was estimated to be 2.25 pg TEQ/kg b.w./day. When non-detected isomer concentrations are assumed to be equal to half of the limits of detection (ND=1/2 LOD), the mean daily intake was estimated to be 3.22 pg TEQ/kg b.w./day. These values were below the tolerable daily intake (TDI) of 4 pg TEQ/kg b.w. for PCDD/Fs and dioxin-like PCBs set in Japan. In both the estimates, the mean daily intakes were highest from fish and shellfish (76.9% at ND=0 and 53.9% at ND=1/2 LOD of the total TEQs), followed by those from meat and eggs (15.5% at ND=0 and 11.7% at ND=1/2 LOD of the total TEQs). Congener specific data revealed that these total TEQ levels were dominated by 1,2,3,7,8-PeCDD, 2,3,4,7,8-PeCDF and 3,3,4,4,5-PeCB in each case (71.7% at ND=0 and 63.1% at ND=1/2 LOD of the total TEQs). The dioxin-like PCBs (non-ortho and mono-ortho PCBs) accounted for about 50% of these total TEQs. These data will be very useful in the risk assessment of PCDD/Fs and dioxin-like PCBs from food in Japan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号