首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   1篇
废物处理   3篇
环保管理   5篇
综合类   9篇
基础理论   10篇
污染及防治   5篇
评价与监测   4篇
社会与环境   2篇
  2022年   1篇
  2021年   2篇
  2017年   4篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2011年   8篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1996年   2篇
  1994年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
1.
To develop an effective waste management strategy for a given region, it is important to know the amount of waste generated and the composition of the waste stream. Past research has shown that the amount of waste generated is proportional to the population and the average mean living standards or the average income of the people. In addition, other factors may affect the amount and composition of waste. These are climate, living habits, level of education, religious and cultural beliefs, and social and public attitudes. This paper presents the findings of a study carried out in a suburban municipal area in Sri Lanka to determine the solid waste generation rate and waste composition based on field surveys and to determine the related socio-economic factors. A database was developed that included information on the quantity and composition of waste generated in a sample of households in the study area over a time period. The collected data was analysed to relate waste generation and composition data to various socio-economic factors. Over 400 sample households were selected for the study using a stratified random sampling methodology based on municipal wards and property values. A technique that considers both the number of households in a particular income group (property value range) and the standard deviation of property values within a given income group was used to determine the appropriate sample size for each municipal ward. Through category and regression analyses, the quantities of waste and waste composition were related to several socio-economic factors. The paper describes the basis for the sample selection, the methodology adopted for data collection, the socio-economic parameters used for the analysis, and the relationships developed from the analysis.  相似文献   
2.
Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha?1. The CaCl2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.  相似文献   
3.
Influence of prairie restoration on CT-measured soil pore characteristics   总被引:3,自引:0,他引:3  
Restored prairies are expected to improve soil physical properties, yet little is known about the extent of change to soil properties and how rapidly these changes take place. The objective of this study was to compare effects of prairie restoration on computed tomography (CT)-measured pore parameters. Undisturbed soil cores (76 mm diam. by 76 mm long) from native prairie (NP), restored prairie (RP), conservation reserve program (CRP), and no-till corn (Zea mays L.)-soybean (Glycine max (L.) Merr.; CS) sites were collected with six replicates from the 0- to 40-cm depth in 10-cm increments. Five CT images were acquired from each soil core using a medical CT scanner with 0.2 by 0.2 mm pixel resolution with 0.5 mm slice thickness, and then images were analyzed. Soil bulk density and hydraulic conductivity (K(sat)) were also measured. Soils under NP, RP, CRP, and CS areas had 83, 43, 48, and 26 pores on a 2500 mm(2) area, respectively, for the 0- to 40-cm depth. The number of pores, number of macropores (>1000 microm diam.), macroporosity, mesoporosity (200-1000 microm diam.), and fractal dimension were significantly higher and pore circularity was lower for NP, RP, and CRP than the CS treatment. The CT-measured mesoporosity and macroporosity of the CS treatment were 20 and 18% of the values for the NP site. CT-measured number of pores and macropores explained 43 and 40% of the variation for K(sat). The study showed that prairie restoration improves CT-measured soil pore parameters and decreases bulk density which are related to soil water infiltration.  相似文献   
4.
Effects of precipitation, runoff, and management on total phosphorus (TP) loss from three adjacent, row-cropped watersheds in the claypan region of northeastern Missouri were examined from 1991 to 1997 to understand factors affecting P loss in watersheds dominated by claypan soils. Runoff samples from each individual runoff event were analyzed for TP and sediment concentration. The annual TP loss ranged from 0.29 to 3.59 kg ha(-1) with a mean of 1.36 kg ha(-1) across all the watersheds during the study period. Significantly higher loss of TP from the watersheds was observed during the fallow period. Multiple small runoff events or several large runoff events contributed to loss of TP from the watersheds. Total P loss in 1993, a year with above-normal precipitation, accounted for 30% of the total TP loss observed over seven years. The five largest runoff events out of a total of 66 events observed over seven years accounted for 27% of the TP loss. The five largest sediment losses were responsible for 24% of the TP loss over seven years. Runoff volume and sediment loss explained 64 to 73% and 47 to 58% of the variation in TP loss on watersheds during the study. Flow duration and maximum flow accounted for 49 and 66% of TP loss, respectively. The results of this study suggest that management practices that reduce runoff volume, flow duration, maximum flow, and sediment loss, and that maintain a suitable vegetative cover throughout the year could lower P loss in claypan soils.  相似文献   
5.
Composite ZnO/SnO2 catalyst has been studied for the sensitized degradation of dyes e.g. Eosin Y (2', 4', 5', 7'-tetrabromofluorescein disodium salt) in relation to efficient charge separation properties of the catalyst. Improved photocatalytic activity was observed in the case of ZnO/SnO2 composite catalyst compared to the catalytic activity of ZnO, SnO2 or TiO2 powder. The suppression of charge recombination in the composite ZnO/SnO2 catalyst led to higher catalytic activity for the degradation of Eosin Y. Degradation of Eosin follows concomitant formation of CO2 and formation of CO2 followed a pseudo-first-order rate. Photoelectrochemical cells constructed using SnO2, ZnO, ZnO/SnO2 sensitized with Eosin Y showed V(oc) of 175, 306, 512 mV/cm2 and I(sc) of 50, 70, 200 microA/cm2 respectively. A higher irreversible degradation of Eosin Y and higher V(oc) observed on composite ZnO/SnO2 than ZnO and SnO2 separately can be considered as a proof of enhanced charge separation of ZnO/SnO2 catalyst. Eosin Y showed a higher emission decreases on ZnO/SnO2 composite than on individual ZnO, SnO2 or TiO2 indicating dominance of the charge injection process. Photoinjected electrons are tunneled from ZnO to SnO2 particles accumulating injected electrons in the conduction bands allowing wider separation of excited carriers.  相似文献   
6.
Organic matter plays several important roles in the biogeochemistry of terrestrial and aquatic ecosystems including the mobilization and transport of nutrients and pollutants. Cropping, tillage practices and vegetative buffer strip installation affect losses of dissolved organic carbon (DOC). While many studies show reductions in pollutant export from agroecosystems where vegetative buffers have been implemented, buffer strips may be a source of DOC and contribute to surface water pollution. Using a paired-watershed approach, the objectives of this study were to determine the effect of grass and agroforestry buffers on runoff and DOC loss, compare runoff and DOC losses between the growing and fallow seasons, and investigate crop effects on runoff and DOC losses. The study design consisted of three small agricultural Watersheds in a no-till, maize-soybean rotation located in the claypan region of northeast Missouri, USA; one watershed was planted with grass buffer strips, one with agroforestry buffer strips, and one unaltered watershed served as the control. Runoff and DOC loss were measured during a six-year calibration period (1991–1997) prior to buffer installation and for a nine-year treatment period (1997–2006). The grass buffer strips significantly decreased runoff by 8.4% (p = 0.015) during the treatment period while the agroforestry buffer system exhibited no significant change in runoff (p = 0.207). Loss of DOC was not significantly affected by grass or agroforestry buffer installation (p = 0.535 and p = 0.246, respectively). Additionally, no significant difference in runoff or DOC loss was found between crops (maize and soybean) or between seasons (growing and fallow). Overall, this study indicates that grass buffer systems are effective at reducing runoff and that DOC contamination of surface waters is not exacerbated by either type of vegetative buffer strip.  相似文献   
7.
Due to large scale afforestation programs and forest conservation legislations, India’s total forest area seems to have stabilized or even increased. In spite of such efforts, forest fragmentation and degradation continues, with forests being subject to increased pressure due to anthropogenic factors. Such fragmentation and degradation is leading to the forest cover to change from very dense to moderately dense and open forest and 253 km2 of very dense forest has been converted to moderately dense forest, open forest, scrub and non-forest (during 2005–2007). Similarly, there has been a degradation of 4,120 km2 of moderately dense forest to open forest, scrub and non-forest resulting in a net loss of 936 km2 of moderately dense forest. Additionally, 4,335 km2 of open forest have degraded to scrub and non-forest. Coupled with pressure due to anthropogenic factors, climate change is likely to be an added stress on forests. Forest sector programs and policies are major factors that determine the status of forests and potentially resilience to projected impacts of climate change. An attempt is made to review the forest policies and programs and their implications for the status of forests and for vulnerability of forests to projected climate change. The study concludes that forest conservation and development policies and programs need to be oriented to incorporate climate change impacts, vulnerability and adaptation.  相似文献   
8.
There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO 2 -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.  相似文献   
9.
Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production.  相似文献   
10.
Chronic renal failure (CRF) associated with elevated dietary cadmium (Cd) among farming communities in the irrigated agricultural area under the River Mahaweli diversion scheme has reached a significantly higher level of 9,000 patients. Cadmium, derived from contaminated phosphate fertilizer, in irrigation water finds its way into reservoirs, and finally to food, causing chronic renal failure among consumers. Water samples of River Mahaweli and its tributaries in the upper catchment were analyzed to assess the total cadmium contamination of river water and the possible source of cadmium. Except a single tributary (Ulapane Stream, 3.9?μg?Cd/l), all other tested tributaries carried more than 5?μg?Cd/l, the maximum concentration level accepted to be safe in drinking water. Seven medium-sized streams carrying surface runoff from tea estates had 5.1-10?μg?Cd/l. Twenty larger tributaries (Oya), where the catchment is under vegetable and home garden cultivation, carried 10.1-15?μg?Cd/l. Nine other major tributaries had extremely high levels of Cd, reaching 20?μg?Cd/l. Using geographic information system (GIS), the area in the catchment of each tributary was studied. The specific cropping system in each watershed was determined. The total cadmium loading from each crop area was estimated using the rates and types of phosphate fertilizer used by the respective farmers and the amount of cadmium contained in each type of fertilizer used. Eppawala rock phosphate (ERP), which is mostly used in tea estates, caused least pollution. The amount of cadmium in tributaries had a significant positive correlation with the cadmium loading of the cropping system. Dimbula Tea Estate Stream had the lowest Cd loading (495.9?g/ha/year), compared with vegetable-growing areas in Uma Oya catchment with 50,852.5?g?Cd/ha/year. Kendall's τ rank correlation value of total Cd loading from the catchment by phosphate fertilizer used in all crops in the catchment to the Cd content in the tributaries was +0.48. This indicated a major contribution by the cropping system in the upper catchment area of River Mahaweli to the eventual Cd pollution of river water. Low soil pH (4.5-5.2), higher organic matter content (2-3%), and 18-20?cmol/kg cation exchange capacity (CEC) in upcountry soil have a cumulative effect in the easy release of Cd from soil with the heavy surface runoff in the upcountry wet zone. In view of the existing water conveyance system from upcountry to reservoirs in North Central Province (NCP) through diversion of River Mahaweli, in addition to their own nonpoint pollution by triple superphosphate fertilizer (TSP), this demands a change in overall upper catchment management to minimize Cd pollution through agriculture inputs to prevent CRF due to elevated dietary cadmium among NCP farmers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号