首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
废物处理   2篇
环保管理   3篇
综合类   4篇
基础理论   2篇
污染及防治   3篇
评价与监测   8篇
社会与环境   1篇
  2023年   1篇
  2021年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   4篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Enhanced bioremediation is quickly developing into an economical and viable technology for the remediation of contaminated soils. Until recently, chlorinated organic compounds have proven difficult to bioremediate. Environmentally recalcitrant compounds, such as polychlorinated biphenyls (PCBs) and persistent organic pesticides (POPs) such as dichlorodiphenyl trichloroethane (DDT) have shown to be especially arduous to bioremediate. Recent advances in field‐scale bioremedial applications have indicated that biodegradation of these compounds may be possible. Engineers and scientists at the Savannah River Site (SRS), a major DOE installation near Aiken, South Carolina, are using enhanced bioremediation to remediate soils contaminated with pesticides (DDT and its metabolites, heptachlor epoxide, dieldrin, and endrin) and PCBs. This article reviews the ongoing remediation occurring at the Chemicals, Metals, and Pesticides (CMP) Pits using windrow turners to facilitate microbial degradation of certain pesticides and PCBs. © 2003 Wiley Periodicals, Inc.  相似文献   
2.
We examine the robustness of a suite of regional climate models (RCMs) in simulating meteorological droughts and associated metrics in present‐day climate (1971‐2003) over the conterminous United States (U.S.). The RCMs that are part of North American Regional Climate Change Assessment Program (NARCCAP) simulations are compared with multiple observations over the climatologically homogeneous regions of the U.S. The seasonal precipitation, climatology, drought attributes, and trends have been assessed. The reanalysis‐based multi‐model median RCM reasonably simulates observed statistical attributes of drought and the regional detail due to topographic forcing. However, models fail to simulate significant drying trend over the Southwest and West. Further, reanalysis‐based NARCCAP runs underestimate the observed drought frequency overall, with the exception of the Southwest; whereas they underestimate persistence in the drought‐affected areas over the Southwest and West‐North Central regions. However, global climate model‐driven NARCCAP ensembles tend to overestimate regional drought frequencies. Models exhibit considerable uncertainties while reproducing meteorological drought statistics, as evidenced by a general lack of agreement in the Hurst exponent, which in turn controls drought persistence. Water resources managers need to be aware of the limitations of current climate models, while regional climate modelers may want to fine‐tune their parameters to address impact‐relevant metrics.  相似文献   
3.
Water Quality Survey of Rohtas district of Bihar was conducted. Samples were collected from differentsources and analysed. 209 samples were collectedfrom 196 villages. Results of water quality surveyidentified the problem areas in respect of high iron,manganese, fluoride, nitrate and brackishness of water in the district.  相似文献   
4.
An investigation was conducted from 2001 to 2005 for determining the residual concentration of five pesticides, viz., total-HCH, total-DDT, total-Endosulfan, Dimethoate and Malathion in fish samples collected from various points of the river Ganga. Fish samples were analyzed for pesticide residues using standard laboratory procedures by GC method. It was found that total-HCH concentration remains above the MRL values for maximum number of times in comparison to four other pesticides. The pesticide contamination to fish may be due to indiscriminate discharge of polluted and untreated sewage-sludge to the river. The pesticide contents in some places are alarming. Thus proper care, maintenance, treatment and disposal of sewage water and sludge are most vital and should be the prime thrust for the nation.  相似文献   
5.
6.
The use of ultra filtration in trace metal speciation studies in sea water   总被引:1,自引:0,他引:1  
During this work, size fractionation technique "ultra filtration" is used in speciation studies of trace elements in the coastal sea water. Filtration is the most commonly used method to fractionate trace metal species, but often only "dissolved" and "particulate" fraction. The purpose of the present study is to determine colloidal and suspended particulate concentrations of Fe, Zn, Cu, Ni, and Mn in sea water. Suspended particulate matter were separated in three different size groups namely (>2.7 microm, <2.7->0.45 microm and <0.45->0.22 microm) by suction filtration using cellulose acetate and nitrate filter membranes. Thereafter to concentrate the solution with colloidal particle <0.22 microm-1.1 nm (0.5 k Nominal Molecular Weight cut-off Limit {NMWL}), the solution obtained from filtration through <0.22 microm, is sequentially passed through the ultra-filtration membranes having pore diameters of 14 nm (300 k NMWL), 3.1 nm (50 k NMWL), 2.2 nm (30 k NMWL), 1.6 nm (10 k NMWL) and 1.1 nm (0.5 k NMWL) by using Stirred Ultra-filtration Cells, operating in concentration mode. The concentration of Fe, Zn, Cu, Ni, and Mn were measured in suspended and dissolved fraction by ion chromatography, ICP-AES and Atomic Absorption Spectrometer. The salinity of the solution in various dissolved fractions of sequential filtration varies between 30.89-34.22 parts per thousand. The maximum concentrations of colloidal Zn, Cu, Ni and Mn in dissolved fraction were in <2.2->1.6 nm fraction. In case of Fe, colloidal fractions <2.2->1.6 nm and <1.6-<1.1 nm shows higher concentration. The concentration of Zn, Cu, Ni and Mn increase with decrease in size in suspended particulate matter, while the reverse is observed in case of Fe. This size separation data that specifies the partitioning of metals between dissolved and suspended solid phases is necessary for developing physically based models of metal transport in aquatic system.  相似文献   
7.
Environmental Science and Pollution Research - Efficient nutrient cycling and adequate sediment bioavailable nutrient supply are considered to be the two most important factors regulating the high...  相似文献   
8.
A network model of trophic interactions in a tropical reservoir in India was developed with the objective to quantify matter and energy flows between system components and to study the impact of invasive fishes on the ecosystem. Structure of flows and their distribution within and between trophic levels were analysed by aggregating single flows into combined flows for discrete trophic levels. The trophic flows primarily occurred in the first four trophic level (TL) and the food web structure in this reservoir ecosystem was characterized by the dominance of low TL organisms, with the highest TL of only 3.57 for the top predator. Highest system omnivory index (SOI) was observed for indigenous catfishes (0.422), followed by the exotic fish Mozambique Tilapia (0.402). Nile Tilapia and Pearl spots show the highest niche overlap which suggests high competition for similar resources. The mixed trophic impact routine reveals that an increase in the abundance of the African catfish would negatively impact almost all fish groups such as Indian major carps, Pearl spots, indigenous catfishes and Tilapines. The other invasive fish Mozambique Tilapia adversely affects the indigenous catfishes. The most interesting observation in this study is that the most dominant invasive fish in this reservoir, the Nile Tilapia does not negatively impact any of the fish groups. In fact it positively impacts the Indian major carps. The direct and indirect effects of predation between system components (i.e. fish, invertebrates, phytoplankton and detritus) are quantitatively described and the possible influence and role in the ecosystem's functioning of the invasive fish species are discussed.  相似文献   
9.
Dumping of solid waste in a non-engineered landfill site often leads to contamination of ground water due to leachate percolation into ground water. The present paper assesses the pollution potential of leachate generated from three non-engineered landfill sites located in the Tricity region (one each in cities of Chandigarh, Mohali and Panchkula) of Northern India and its possible effects of contamination of groundwater. Analysis of physico-chemical properties of leachate from all the three landfill sites and the surrounding groundwater samples from five different downwind distances from each of the landfill sites were collected and tested to determine the leachate pollution index (LPI) and the water quality index (WQI). The Leachate Pollution Index values of 26.1, 27 and 27.8 respectively for landfill sites of Chandigarh (CHD), Mohali (MOH) and Panchkula (PKL) cities showed that the leachate generated are contaminated. The average pH values of the leachate samples over the sampling period (9.2 for CHD, 8.97 for MOH and 8.9 for PKL) show an alkaline nature indicating that all the three landfill sites could be classified as mature to old stage. The WQI calculated over the different downwind distances from the contamination sites showed that the quality of the groundwater improved with an increase in the downwind distance. Principal component analysis (PCA) carried out established major components mainly from natural and anthropogenic sources with cumulative variance of 88% for Chandigarh, 87.1% for Mohali and 87.8% for Panchkula. Hierarchical cluster analysis (HCA) identifies three distinct cluster types for the groundwater samples. These clusters corresponds to a relatively low pollution, moderate pollution and high pollution regions. It is suggested that all the three non-engineered landfill sites be converted to engineered landfill sites to prevent groundwater contamination and also new sites be considered for construction of these engineered landfill sites as the present dumpsites are nearing the end of their lifespan capacity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号