首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   2篇
基础理论   2篇
污染及防治   1篇
  2014年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1996年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
There is an increasing public awareness of the relatively new and expanded industrial barium uses which are potential sources of human exposure (e.g., a shale gas development that causes an increased awareness of environmental exposures to barium). However, absorption of barium in exposed humans and a full spectrum of its health effects, especially among chronically exposed to moderate and low doses of barium populations, remain unclear. We suggest a systematic literature review (from 1875 to 2014) on environmental distribution of barium, its bioaccumulation, and potential and proven health impacts (in animal models and humans) to provide the information that can be used for optimization of future experimental and epidemiological studies and developing of mitigative and preventive strategies to minimize negative health effects in exposed populations. The potential health effects of barium exposure are largely based on animal studies, while epidemiological data for humans, specifically for chronic low-level exposures, are sparse. The reported health effects include cardiovascular and kidney diseases, metabolic, neurological, and mental disorders. Age, race, dietary patterns, behavioral risks (e.g., smoking), use of medications (those that interfere with absorbed barium in human organism), and specific physiological status (e.g., pregnancy) can modify barium effects on human health. Identifying, evaluating, and predicting the health effects of chronic low-level and moderate-level barium exposures in humans is challenging: Future research is needed to develop an understanding of barium bioaccumulation in order to mitigate its potential health impacts in various exposured populations. Further, while occupationally exposed at-risk populations exist, it is also important to identify potentially vulnerable subgroups among non-occupationally exposed populations (e.g., elderly, pregnant women, children) who are at higher risk of barium exposure from drinking water and food.  相似文献   
2.
Distance-based methods use point-to-point distances or random-location-to-point distances in a cloud of points to estimate characteristics of the point pattern. One such characteristics is the density of points. The difficulty with distance-based density estimators is that their distribution depends on the spatial pattern of points. In particular, the distribution of distances is untractable for usual clustered patterns, that are often observed in natural systems. Here, we propose a density estimator for clustered patterns, based on the random-location-to-pth-point distance X p . An approximate expression for the distribution function, F p , of X p was obtained by identifying the first two moments of the count of individuals in disks for a given point process with the first two moments of a negative binomial distribution. The approximate expression of F p was then used to derive a maximum-likelihood estimator of the intensity of the point process. The quality of the approximation of F p was assessed for homogeneous Poisson processes (for which the expression of F p is exact) and for Matérn processes. The intensity estimator based on Matérn processes was then used to estimate tree density in a tree savanna in Mali, and it compared favorably with six robust estimators found in the literature.  相似文献   
3.
The Lower Jordan River is located in the semiarid area of the Jordan Valley, along the border between Israel and Jordan. The implementation of the water sections of the peace treaty between Israel and Jordan and the countries' commitment to improve the ecological sustainability of the river system require a better understanding of the riverine environment. This paper investigates the sources and transformations of nitrogen compounds in the Lower Jordan River by applying a combination of physical, chemical, isotopic, and mathematical techniques. The source waters of the Lower Jordan River contain sewage, which contributes high ammonium loads to the river. Ammonium concentrations decrease from 20 to 0-5 mg N L(-1) along the first 20 km of the Lower Jordan River, while nitrate concentrations increase from nearly zero to 10-15 mg N L(-1), and delta(15)N (NO(3)) values increase from less than 5 per thousand to 15-20 per thousand. Our data analysis indicates that intensive nitrification occurs along the river, between 5 and 12 km from the Sea of Galilee, while further downstream nitrate concentration increases mostly due to an external subsurface water source that enters the river.  相似文献   
4.
The flow rate of the Lower Jordan River has changed dramatically during the second half of the 20th century. The diversion of its major natural sources reduced its flow rate and led to drying events during the drought years of 2000 and 2001. Under these conditions of low flow rates, the potential influence of external sources on the river discharge and chemical composition became significant. Our measurements show that the concentrations of chloride, calcium, and sodium in the river water decrease along the first 20-km section, while sulfate and magnesium concentrations increase. These variations were addressed by a recent geochemical study, suggesting that ground water inflow plays a major role. To further examine the role of ground water, we applied mass-balance calculations, using detailed flow rate measurements, water samplings, and chemical analyses along the northern (upstream) part of the river. Our flow-rate measurements showed that the river base-flow during 2000 and 2001 was 500 to 1100 L s(-1), which is about 40 times lower than the historical flow rates. Our measurements and calculations indicate that ground water input was 20 to 80% of the river water flow, and 20 to 50% of its solute mass flow. This study independently identifies the composition of possible end-members. These end-members contain high sulfate concentration and have similar chemical characteristics as were found in agricultural drains and in the "saline" Yarmouk River. Future regional development plans that include the river flow rate and chemistry should consider the interactions between the river and its shallow ground water system.  相似文献   
5.
Long-term monitoring of the chemical composition of recharge sewage effluent and associated contaminated groundwater from the Dan Region Sewage Reclamation Project shows, after 16 years of recharge operation, the presence of a distinct saline plume (up to 400 mg/l Cl), extending 1600 m downgradient in the Coastal Plain aquifer of Israel. The recorded electrolyte composition of groundwater in the vicinity of the recharge area reflects the variations in the compositions of the sewage effluents, as well as water-rock interactions induced by the recharge of treated sewage effluents. The original sewage composition was modified, particularly during early stages of effluent migration in the unsaturated zone, by cation-exchange and adsorption reactions. Since the soil sorption capacity is finite these reactions caused only limited modifications, and once the system reached a steady state the inorganic composition of the contaminated groundwater became similar to that of the recharge water. Decomposition of organic matter in the unsaturated zone resulted in CO2 generation and dissolution of CaCO3 minerals in the aquifer. It was shown that chemical and/or bio-degradation of organic matter takes place mainly in the unsaturated (vadose) zone. Hence, monitoring the efficiency of the vadose zone to retain contaminants is essential for evaluating the quality of groundwater since it was shown that organic compounds behave almost conservatively once the effluents enter and flow within the saturated zone.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号